
Falcon Survival Guide 1/130

THE
FALCON'S
SURVIVAL

GUIDE

Falcon Survival Guide 2/130

Table of contents
THE..1
FALCON'S SURVIVAL GUIDE..1
Introduction..5

Your first Falcon script..7
Control structures...7

The if/elif/else statement..7
The switch statement...10
The select statement...12
The while statement...13
The loop statement...14
More on lines and statements...15
Constant declarations...16
About the for/in loop..17

Basic Datatypes..17
Arrays...17
Array manipulation functions..20
Comma-less arrays...21
Strings..21

Multiline strings..22
International strings...24

String replication...25
String-to-number concatenation..25

String polymorphism...25
Literal Strings..27
String expansion operator..27
String manipulation functions..29
Dictionaries..29

Dictionary support functions...30
Lists..31
The "in" operator ..31
The for/in loop...32

For/in ranges...34
For/to loops...34
For/in lists...35
For/in generators...35

Memory buffers...35
Bitwise operators...36

The functions..36
Recursiveness..38
Local and global variable names...38
Static local variables and initializers...39

Anonymous and nested functions..40
Function closure...41
Codeblocks...42
Callable arrays...43
Accessing the calling context..43
Non positional parameters...44

Functional programming..45

Falcon Survival Guide 3/130

The theory..45
Evaluating in functional context..46

Evaluation operator...48
Multiple evaluation...49
Cascading..50
List evaluation...51

Late bindings..53
Self-referencing local values...54
Parametric evaluation..54
Functional loop...55
More functional loop...56

Out of banding in detail...56
Out of banding and procedural programming...57

Objects and classes...59
Falcon stand-alone objects...59

The "provides" and "in" operators for objects...61
The init block...62

Classes..63
Methods with static blocks..65
Classwide methods..65
Property accessors..66
Multiple inheritance...67
Base method overriding...67
Private members..69
Operator overloading...69

Mathematical operator overloading..71
Comparison overloading...71
Subscript overloading...72
Call overrides and functors...73

Automatic string conversion..74
Object initialization sequence..75
Classes in functional sequences...77

Stateful classes..77
A scared bird..77
States definition...78
Transition functions...79
State inheritance...80
The init state...81

Init state and __enter method..81
Prototype based OOP...82

Instance creation..83
Prototype factory functions...84
Prototype cloning..84
Referencing the factory function...84

A small prototype class sample..85
Operator overloading...85

Mathematical operator overloading..86
Comparison overload...87

Message Oriented Programming..87
Assertions...88

Falcon Survival Guide 4/130

Broadcast Control..89
Cooperative broadcast..90
Automatic marshaling..91
Message Slots..91

Iterating on VMSlots...92
Tabular programming...93

Tables are classes..93
Default Values..94

Table operations..95
Table pages..96
Table-wide operations...98

Iterators...101
List Comprehension..103

Comprehension components..104
Basic examples..104
Dictionary comprehension...105
Generators..105
Completion comprehensions..107
Custom comprehensions..107
For/in generators..107

Error recovery...108
Raising errors...110

Falcon modules...111
The export directive...112
The load directive..112
Partitioning...112

Sibling modules...113
Submodules...114
Direct name loading..114

The Slave/Master test...114
Module initialization code...115

Implicit and explicit import...116
Local import and namespaces..117

Local import in global namespace..119
Dynamic module loading...120

The directive statement...120
Lang directive..120
Strict directive and def statement...121
Version directive..122

Advanced topics...122
Variable aliases and pass by reference...122
Coroutines..123

Synchronization..123
Program internationalization..124

Merging newer versions of the string table...126
Variable parameter passing..127

Accessing variable parameters by reference...128
The indirect operator..128
Meta compilation...129
Attributes...130

Falcon Survival Guide 5/130

Introduction
Falcon is what is commonly known as a scripting language ; program source code is simply referred
as the "script". The script is organized into lines that are executed one after another (empty lines
being ignored). Every line is interpreted as a command, or more properly, as a statement. The most
basic statement is the assignment , which allows storing a value into a variable. A variable is exactly
that: a temporary storage for a value. Meet our first falcon script:
number = 0

This is an assignment storing the value 0 into the variable named number . Variable names must
start with a lower case or uppercase letter, with a _ underline sign or with any international
character; after that you may use any letter or number, and the "_" underline sign. Some examples
of valid names: number, _Aname, variable_number_0.

Falcon understands symbol names in any language of the world. For example , the number we have
seen above may be written in Chinese:
 数 = 0

Falcon provides three elementary value types: integer numbers, floating point numbers and strings.
Integer numbers include 0, 1, 2 and also -1, -2, -3 and so on. Floating point numbers are numbers
that contain a floating point; i.e. 1.2, 0.001, or scientific notation numbers such as 1.34e15,
indicating 134 followed by 13 zeros. Falcon also supports hexadecimal and octal numbers in
standard C notation (0x. and 0.); explaining what hexadecimal and octal numbers are is beyond the
scope of this text (and if you don't know what they are, then you don't need them).

Strings are sequences of characters enclosed with double quotes, like this: "this is a
string" . Strings may span across multiple lines; and in that case any blanks or tabs before the
first character will be removed.

An element that is quite important in every programming language is the comment. Comments are
pieces of text that are completely useless to the program, but that can be used to write information,
warnings or just notes in the text. Falcon supports C-language style single line and block comments.
A single line comment begins with two slashes (//) and ends at the end of the line. A block comment
begins with a slash followed by an asterisk, and terminates when an asterisk followed by a slash is
met (/*...*/). Many programmers love to mark code areas with lots of asterisks or slashes. So, we
are ready to see how a Falcon script may look like:
/*********************************
 My First falcon Script
*/

var1 = 156 // An integer number
var2 = 1e15 // A scientific notation number
var3 = "Hello World" // A string

//////////////////////////// end of the script

Falcon supports the "execute script" pre-processing directive for Unix shells: if the
first line of the script begins with a pound sign (#) the line is ignored by Falcon . Its

Falcon Survival Guide 6/130

use is to indicate to the shell that it's the Falcon interpreter that is to execute the
script, i.e. #!/usr/bin/falcon

Other than comments, statements and elementary constants, the last Falcon basic brick is the
expression . An expression is a set of elementary constants, variables or simpler expressions
connected via operators. Here are some examples:
number = 10
sum = number + number
value = number * sum * 5 + 2
complex_value = value * (number + 1.2) - 15 * (sum/3.15)
sum_of_string = "A string" + " "+ "and another"

Falcon provides a number of operators that work on strings. For example , summing a string to
another, or to a variable which contains a string, will result in new strings containing the two
original strings joined together.

The mathematical operators that Falcon supports are addition (+), subtraction (-), multiplication (*),
division (/), power (**) and modulo (%). The power operator can take a fractional number as a
second operand; in this way it's possible to perform arbitrary roots. For example , 100 ** 0.5 will
give 10 as result. The modulo operator can be applied to two integer numbers ONLY and gives the
remainder of their division; for example , 10 % 5 is 0, while 10 % 3 is 1 (because 3*3 = 9, and 10 -
9 = 1). Applying the modulo operator to non-integer numbers will cause an error to be raised.

Falcon also supports "self operators"; they are +=, -=, *=, /=, **= and %=. Self operators assign to a
variable the operations they represent using the same variable value in the operation. For example:
number = 10
number += 1

will cause {number} to become 11.

Falcon also provides ++ and -- operators. Both prefix and postfix operators are
supported.

One particularly important expression in Falcon is the function call . Function calls are composed of
a symbol near two round brackets which can contain a list of parameters , each of which may be an
expression and separated by commas. Like this:
number = 10
printl("The square of 10 is: ", number * number)

We just met our first function: printl. This function prints all of its parameters and then advances
the cursor to the next line. Another function, named print, just prints all the parameters without
advancing the cursor to the next line.

print and printl are actually using the virtual machine standard output stream to
perform output. This stream can be managed by the embedding application, redirected
to files, and encoded through Unicode or through other encodings.

Functions may "return a value"; print and printl do not return any value, but a function that
returns a value may be used as a part of an expression, like this:
number = 10 * a_function_of_some_kind(10)

Falcon Survival Guide 7/130

As variables, function names may be written in any language. For example, the following sentence
in Japanese is correctly understood in Falcon:

 かず = 10 * 例え＿ファンクチオン(10)Your first Falcon script
It's time to execute your first Falcon script. To do this, write the following lines in a text editor (i.e.
Notepad), save the file as first.fal and enter a console (also known as "Ms-Dos" prompt, or "cmd"
prompt). To do this, you are supposed to know how to access the console and change the directory.
Minimal survival instructions for Windows-users are: press "start" and select "execute command".
If you are running Windows 95, 98, or ME write "command" in the box that appears on the screen;
if you are running Windows NT, 2000 or XP write "cmd". Press enter, and voilà. Under Linux, for
example, just open up a Terminal. Finally, launch Falcon with the command "falcon first.fal". Here
is the code for first.fal:
/*************************************
* First Falcon program: first.fal
* This is just a comment; its content
* does not matter, is just here to
* remind you that this was your first
* Falcon script ever.
**************************************/

> "Hello world."

When a line begins with > what follows is sent to the output stream and a newline character is
added. This is called called fast print, as opposed to other methods to write output (for example,
through the printl() function that has been shown before).

A line may begin with >> alone, in which case what follows is sent to the Falcon output stream, but
without appending a final end-of-line (EOF) character.Control structures
Falcon programs, or scripts, are executed one line after another, beginning from the first to the last.
This is a quite dull way to program, so it's possible to modify the order by which lines are executed.
This is done using some statements that go generally under the name of "control structures", and are
divided in two main categories: conditional control structures and loop control structures. We'll
begin with the former.

Conditional structures allow the execution of part of the script if a condition is verified, or
otherwise acknowledged to be true. Verifying that a condition is true is the responsibility of the
"relational" operators, and by their big brothers the "logical operators". Relational operators put two
variables or values in a relation and the expression becomes either true or false depending on the
truthfulness of the expression. The most important relational operators are "==", ">", "<", ">="
(greater or equal), "<=" (less or equal) and "!=" (different from). Note that "==" is used in place of
"=", as the latter is used for assignment.The if/elif/else statement
The basic control structure is the if statement. The if statement executes a set of statements

Falcon Survival Guide 8/130

beginning with the very next line up to the "end" statement only if the condition is true. Look at this
example:
number = 10

if number > 10
 printl("This is impossible")
end

As the expression above is always false, the printl function will be never called. The "if"
statement may have an optional "else" clause that is executed only when the expression is false.
Look at this example:
number = 10
if number > 10
 > "This is impossible"
else
 > "This is possible"
end

This code will always print "this is possible". Finally, the if statement may contain a list of clauses
called elif. Every elif clause evaluates an expression; if the expression is true, then the
instructions below the elif are executed, else the next elif is checked, or else block is executed.
This is how a complete if statement should look:
if expression
 statements...

elif expression
 statements...

elif expression
 statements...

 /* other elifs */
else
 statements...

end

Empty lines are always ignored; putting space below every statement block is considered "elegant".
Also, it's wise to put some space right before every statement that is inside a block; all this makes
immediately visible what a block is supposed to do and where it is supposed to end. The technique
of moving the statements inside a block is called indentation and is considered very important for
program readability; having a good indentation style will make your code be regarded as clean and
professional. As a general rule, add three spaces each time you put some statement inside a code
block.

Let's see a more interesting example for the if statement:
print("Enter your age: >")
age = int(input())

if age <= 5
 > "You are too young to program. Maybe."

elif age > 12
 > "You may already be a great Falcon programmer."

else
 > "You are ready to become a programmer."

end

> "Thanks for telling me"

Falcon Survival Guide 9/130

Try this program and enter some numbers. Then try to enter a letter; you'll get what is called a
"runtime error" that will terminate your application. We'll learn how to take advantage of this fact
later; for now go on trying some numbers.

The input function will read the data you type up to when you press the enter key; the int()
function will try to convert your typing into an integer number. Now look at the if; the statements
inside it are executed only when the entered number is equal or less than 5. If this happens, neither
the following elif nor the else blocks are executed; if the number is greater than five then the
elif condition is checked. If it's true, the statements inside it are executed and the else block is
skipped; if it's false, the else block will finally be executed. The code outside the if (the last
printl) will always be executed.

Let's move on; we talked about the relational and logical operators. Logical operators are
responsible for combining several relational expressions into one; there are three: and, or and
not.

The and operator will make the expression to be true only when both its left part and right part are
true. The or operator will cause the expression to be true when at least one of the left or right
expressions is true. The not operator will reverse the truthfulness of the expression that follows it.

For example, age > 8 and age < 12 would be true when the age is 9, 10 or 11, while age
= 9 or age = 10 would be true when age is 9 or 10.

As in algebra, the logical operators have a precedence. The or operator has the least precedence,
and has a higher precedence and not has the highest; this means that any or will be considered
after any and , and both of those will be considered only after any not. In this example:
a == 0 or a > 2 and not a > 8

The expression is true if a is 0 (notice the double '=='), or if a is greater than 2 but not greater than
8. You can make things generally much easier to read adding parenthesises, like this:
(a == 0 or a > 2) and not a > 8

This expression will held true if a is 0 or a is greater than 2. Additionally, in both cases the variable
must be not greater than 8. Variables may also hold a truth value. In this example a is assigned the
value of the expression opposite it:
b = -1
c = -2
a = (b > 0 or c > 0)
/* some code here */
if a: printl("a is true") // typing > a at the prompt would output 'false'

A variable is considered false if it holds 0, an empty string (like ""), an empty collection or the
special value nil . It is true in every other case. Two base logic values are provided: true and
false can be used as special values, one always being true and the other always evaluating to
false; they are equal only to themselves. For example:
a = true
a == true: printl("A is true") // same as if a: ... if

The value of an assignment always matches the final value of the variable that received the
assignment. In other words:
a = 1

Falcon Survival Guide 10/130

(a += 1) == 2: > "a is now 2" // a was 1 but became 2 by the time it was evaluated if

a -= 2: > "a is now 0, so this check is 'false' and this line won't be printed" if

Be sure not to write "=" instead of "==" when you want to check for a value! Another way to
execute a piece of code based on a condition is the so-called fast-if operator. The definition is as
follows:
<condition> ? <if true> [: <if false>]

Actually, this operator (also known as the ternary operator or "?:") is directly borrowed from C.
The value of the whole expression will be the expression right after the question mark if the
condition is true, and the expression right after the colon if the condition is false. The latter may be
missing; in that case, if the condition is false the whole expression will assume the nil value. Here
are some examples:
var = is_process_done ? "Done" : "Still incomplete" // assigns text to a variable

> is_process_done ? "Done" : "Still incomplete" // outputs text

 if is_process_done ? first_test() : second_test()
 printl("One of the two tests had been successful") // reports the a result
end The switch statement
When a single value is needed to be checked against several different values, the if statement is a
little clumsy. The switch statement checks a single value against several cases, providing a different
set of statements to be executed in each of these conditions. The only limitation of switch is that the
expressions it can examine must be strings or integers.

The prototype of a switch is as follows:
switch expression

 case item [, item, .. item]
 statements...

 case item [, item, .. item]
 statements...

 /* other cases */

 default
 statements...
end

With switch a case statement may present one or more items, each of them separated by commas.
If any of them is equal to the switch expression, then that case's statements are executed. Items that
can be used as case selectors are:

• Integer numbers
• String literals
• Integer intervals
• Variable names
• The nil literal

Switches are actually powerful statements that can handle in one single VM step a very complex set
of operations. If the item resulting from the switch expression is a number, it is checked against the

Falcon Survival Guide 11/130

integer cases and intervals. If it is a string, it is checked against all the string cases. These operations
are actually performed as binary searches on the cases, so the selection of a case is quite fast.
Ranges of integers to be checked can be declared with the to keyword as in this example:
switch expression
 ...
 case 1 to 13, 20, 30, 40, 50, 60, 70, 80, 90 to 100
 /* Special number formatting handling */
 ...

Case items can also be simple variable names. Since their value can't be known in advance, and the
check will be performed by scanning all the given variables for one matching the value of the
expression in the order they are declared.

An optional default clause may be present and will be executed if none of the cases can be
matched against the switch expression. This is an example:
print("Enter your age: >")
age = int(input())
switch age
 case 1 to 5
 printl("You are too young to program. Maybe.")

 case 6, 7, 8
 printl("You may already be a great Falcon programmer.")

 case 9, 10
 printl("You are ready to become a programmer.")

 default
 printl("What are you waiting for? Start programming NOW")
end

As mentioned before, the switch statement may also be used to check against strings:
switch month
 case nil
 > "Undefined"

 case "Jan", "Feb", "Mar"(P43)
 > "Winter"

 case "Apr", "May", "Jun"
 > "Spring"

 case "Jul", "Aug", "Sep"
 > "Summer"

 default
 > "Autumn"
end

And symbols (that is, variable names) can be used as well.
switch func
 case print
 printl("It was a print !!!")

 case printl
 printl("It was a printl !!!")

 case MyObject
 printl("The value of func is the same of MyObject")
end

The values of symbols are determined at runtime. That is, in the above example, we may assign
everything to MyObject, including printl. If this happens, the first matching case gets selected,

Falcon Survival Guide 12/130

as if a set of if/else statements were used to determine the value of func .

However, since these checks are performed by the virtual machine in just one loop, the switch
statement is much more efficient than a set of if/else statements (and it's more elegant), so
when there's the need to check a variable against values that may be held in other variables, or
against constant integer or string values, it's always better to use the switch statement.

As switch is a multi-line statement by nature, and since it should hold at least a "case" statement, it
cannot be abbreviated on a single line with the colon (":"); however, each case can be placed on a
single line if it improves the look of the code.The select statement
The select statement is a switch that considers the type of the selected variable, rather than
considering its value.
select variable
 case TypeSpec
 ...statements...

 case TypeSpec1 , TypeSpec2 , ..., TypeSpecN
 ...statements...

 default
 ...statements...
end

A TypeSpec can either be one of the pre-defined variable types or a symbol defined in the
program. The symbol may be a variable, or it may be one of the things that has not yet been
introduced: it may be a function, a class or an object instance.

Predefined types are the following:

• NilType
• BooleanType
• IntegerType
• NumericType
• RangeType
• MemBufType
• FunctionType
• StringType
• ArrayType
• DictionaryType
• ObjectType
• ClassType
• MethodType
• ClassMethodType
• OpaqueType

Predefined types get priority over class and instance cases, so a case such as "ObjectType" will
prevent any branch on classes and objects ever to be considered. Case checking for symbols is
performed in the order they are declared.

Even if obj is derived from Beta, as the check on derivation from Alfa comes first, that branch will
be executed. In case of select statements testing related classes, the topmost siblings should be listed

Falcon Survival Guide 13/130

first.

As with the switch statement, select case and default statements can be shortcut with the
colon. The following is an example:
select param

 case IntegerType, NumericType
 return "number"

 case StringType: return "string"

 case Test2: return "class test2"
 case Test: return "class test"
 case Instance: return "instance obj"
 default : return "something else"
end

As with switch statements, symbolic case branches can actually be any kind of variable. Being
dynamic, their contents may change at runtime.The while statement
The while statement is the most important loop control statement. A loop is a set of zero or more
statements that can be repeated more than once; usually there is a condition that causes the loop to
be interrupted at some point.

The prototype of the while statement is:
while expression
 statements...
 [break]
 statements...
 [continue]
 statements...
end

While the expression is true, that is, each time the expression is found true, the statements are
repeated. When the "end" keyword is reached the while expression is evaluated again, and if it's
still true, the statements are repeated. The while statement may contain two special statements
called break and continue . The break statement will cause the loop to be immediately
terminated, and the Falcon VM will execute the first statement right after the end keyword. The
continue statement does the opposite: it brings control immediately back to the while condition
evaluation. If the condition is still true, the loop is repeated from start, and if it's now false the loop
is terminated. (P6)Look at this example:
>> "Enter your age: > "

age = int(input())
count = 0
while count < age

 if count == 18
 printl("Congratulations, you may be able to vote!")
 count += 1
 continue
 end

 if count == 23
 printl("Ok, I'm bored with this.")
 break
 end

 count += 1

Falcon Survival Guide 14/130

 > "Happy belated birthday for your ", count, "."

end

Please notice that we have used ">>" here to print the first line without appending a newline after it,
and that the last ">" is followed by a list of values. In fact, the ">>" and ">" commands work
respectively like print() and printl(), and, just like those two functions, they have the ability
to accept more than one parameter. From now on we'll use mainly print()/printl() calls in
the examples. This example will print some compliments for seventeen times; at the eighteenth it
will change behavior. Notice that we must increment the counter before using the continue
statement, because without this the while expression will be true again, and the number won't
change. If you want to experiment with your first endless loop, remove that instruction. You can
then stop the program by pressing CTRL+C. Then, when it comes to twenty three, an if statement
causing immediate interruption of the loop will be executed. Notice that it's always possible to
create endless loops that have an internal break sequence:
count = 0
while true

 if count > 100
 break
 end

 // do something here

 count += 1
end

But this is less efficient and somewhat confusing for the human reader. Sometimes you'll want it
anyway, but you must have a good reason for having a while loop work this way. A while
statement can be abbreviated with the trailing colon if the loop is composed by only a statement.
One example might be:
 while var < 10 : var = calc(var)

hoping that calc(var) will somehow increase var to more than 10, sooner or later.The loop statement
The loop works similarly to the while statement; it loops up to the moment where an end
condition is met. The end condition is given after the end keyword, and is evaluated after the loop
is performed at least once. Use of the end condition is optional; if not given, the loop goes on
forever (or until a break statement is given inside it).

In example, to repeat a code section until a counter becomes 100:
count = 0
loop
 > ++ count
end count == 100

which is equivalent to:
count = 0
loop
 > ++ count

 if count == 100
 break

Falcon Survival Guide 15/130

 end
end

As with all the other block statements, the loop statement may be shortened with the ":" colon.More on lines and statements
It is possible that an expression will not fit on a text line. There are ways to avoid it, i.e. putting the
partial expression values inside short name variables like so:
a = a_very_long_name and another_long_name
b = a_very_very_long_name and AnotherNameWithCapitals
 if a or b
//...
end

This usually improves readability of the scripts; but it costs memory, and sometimes it is just not
possible to split expressions into different lines.

It's possible to split a statement on more than one line by putting a backslash ("\") at the end of it:
if a_very_long_name and another_long_name or \
 a_very_very_long_name and AnotherNameWithCapitals

 /* some statements here */

end

When you do so, it's a good habit to indent the exceeding part of the statement many times, so that
it can be seen that it belongs to the upper statement, and to separate the block statements with at
least a blank line.

When evaluating very long expressions, or when passing many long parameters to a function,
having to use the backslash is a pain. So, in scripts, Falcon keeps track of the open parenthesis, and
allows splitting the statement up to when the parenthesis is closed. In lists of elements, the comma
may be followed by a new line without the need for a backslash. Look at this example:
printl("This is a very long function call ",
 "which spawns on several lines ",
 "and includes long math such as: ",
 (alpha_beta + gamma) * 15 - 2 +
 psi + fi)

printl("This is shorter")

As it is not possible to put any statement inside a parenthesis, you don't have to worry about the fact
that you may accidentally forget to close one; the compiler will raise an error when it finds a
statement that looks as it were inside an expression, and sooner or later you'll have to put a
statement somewhere.

This "auto-statement continuation" is useful while defining arrays or dictionaries, that we'll see
later, because it allows declaring one item on each line without having to add an escape character at
the end of the line.

Sometimes it's a good idea to split a statement onto two lines; sometimes you'll want the opposite.
There are some code slices that are better read and managed if they are kept tiny, in a handful of
lines. This can be achieved by separating different statements with the semicolon sign (";") and
placing them on the same line:
print("Expression is "); a += 2; printl(a)

Falcon Survival Guide 16/130

: By using the semicolon, you are putting different statements on the same line. There's no way in
which you can use the colon "short statement block" indicator to have more than one statement to
be considered by that method. Using a shortened statement and a semicolon will just cause the
second statement to be considered as if it were separated. The compiler won't warn about this fact,
that may pass unobserved; for example:
a == 0: print("Expression is "); a += 2; printl(a) if

This line of code may look like as if it were executed only if a is 0. Indeed, just the first print is
executed in that case; but the other two statements are executed regardless, and that may not be a
desirable thing. A similar effect may be achieved instead with:
 if a == 0 ; print("Expression is "); a += 2; printl(a); end

Notice the semicolon instead of the colon after the if . This is just an if statement, a block of
three statements and an end written on the same line. As the compiler will complain if the end is
missing (not immediately, just when it will find some incongruity in the control flow, but at least it
will warn about it) this code is safer than the one above that may look to be doing one thing and
actually do something else. You have to be careful when you put more than one statement on a line,
and so, when you use shortened statements with the ":" colon operator the general rule is to avoid
the practice unless you are sure that 1) you can't get confused and 2) statements look better on a
single line.Constant declarations
Sometimes it's useful to create a set of constants that may be used as symbols. This is useful to
parameterize scripts at compile time, so that they can, for example, behave differently on different
platforms, or just to associate a number with a symbolic meaning. The const keyword defines a
constant and has this definition:
const name = immediate_value

An immediate value can be a number, a literal string, the nil keyword or another already defined
constant. Once a constant is defined, it can be used in the program as if it were a variable:
const loop_times = 3

for i in [1:loop_times]
 > "looping: ", i
end

Remember that const can only declare constants that will be visible in the module currently being
compiled, and only from the point where they are declared onwards.

A more organic constant values declaration, which may also be made available in foreign modules,
is the enum keyword. This keyword creates a list of correlated constants which may assume any
value. If a value is not declared, the constants are given an integer value starting from zero. For
example :
enum Seasons
 spring
 summer
 autumn
 winter
end

> Seasons.spring // 0

Falcon Survival Guide 17/130

> Seasons.winter // 3

The numeric values given to these constants are generated by adding 1 to the previous numeric
value (rounded down); so it's possible to alter the sequence and to insert strings like this:
enum Seasons
 spring = 1 // 1
 summer // 2
 midsummer = "So hot..." // "So hot..."
 endsummer // 3 (string skipped)
 autumn = 10.12 // 10.12
 winter // 11
end

As the enum keyword is meant for readability, it's suggested that this feature be used widely to set a
starting point, or to mix strings, numeric and nil values coherently.

Enumerated variables are runtime constants. This means that the compiler won't complain if an
assignment to an enumerated constant is found, but an error will be raised in case a script actually
tries to change one of those values.About the for/in loop
A last control structure is the for/in loop; as its main function is that to iterate over particular data
types (strings, arrays, dictionaries, lists, ranges and so on) it is presented in the next chapter, after
having introduced those data types in detail.Basic DatatypesArrays
The most important basic data structure is the array. An array is a list of items, in which any element
may be accessed by an index. Items can also be added, removed or changed.

Arrays are defined using the [] parenthesis. Each item is separated by the other by commas, and
may be of any kind, including the result of expressions:
array = ["person", 1, 3.5, int("123"), var1]

Actually the square brackets are optional; if the list is short, the array may be declared without
parenthesis:
array = "person", 1, 3.5, int("123"), var1

But when using this method it is not possible to spread the list on multiple lines without using the
backslash. Compare:
array = ["person",
 1,
 3.5,
 int("123"),
 var1
]

array = "person", \
 1, \
 3.5, \

Falcon Survival Guide 18/130

 int("123"), \
 var1

These two statements do the same thing, but the first is less confusing.

A list may be immediately assigned to a literal list of symbols to "expand it". This code:
a, b, c = 1, 2, 3

Will cause 1 to be stored in a, 2 to be stored in b, and 3 in c. More interestingly:
array = 1, 2, 3 // a regular array declaration
/* Some code here */
a, b, c = array // the array's contents get copied to single variables

This will accomplish the same thing, but having the items packed in one variable makes it easier to
carry them around. For example, you may return multiple values from a function and unpack them
into a set of target variables. If the size of the list is different from the target set, the compiler (or the
VM if the compiler cannot see this at compile time) will raise an error.

An item may be accessed by the [] operator. Each item i numbered from 0 to the size of the array -1.
For example, you may traverse an array with a for loop like this:
var1 = "something"
array = ["person", 1, 3.5, int("123"), var1]
i = 0
while i < len(array)
 printl("Element ", i,": ", array[i])
 i++
end

The function len() will return the number of items in the array. Array items also provide a method
called len which allows extraction of the length of the array through the "dot" object access
operator; the above line may be rewritten as:
while i < array.len(): > "Element ", i,": ", array[i++]

A single item in an array may be modified the same way by assigning something else to it:
array[3] = 10

An element of an array may be any kind of Falcon item, including arrays. So it is perfectly legal to
nest arrays like this:
array = [[1,2], [2,3], [3,4]]

Then, array[0] will contain the array [1, 2]; array[0][0] will contain the number 1 from the [1,2]
array.

Array indexes can be negative; a negative index means "distance from the end", -1 being the last
element, -2 the element before the last and so on. So
array[0] == array[- len(array)]

always holds true (with a list that has at least one element).

Trying to access an item outside the array boundaries will cause a runtime error; this runtime error
can be prevented by preventively checking the array size and the type of the expression we are
using to access the array, or it can be intercepted as we'll see later.

It is possible to access more than one item at a time; a particular expression called "range" can be

Falcon Survival Guide 19/130

used to access arrays and extract or alter parts of them. A range is defined as a pair of integers so
that R=[n : m] means "all items from n to m-1". The higher index is exclusive, that is, excludes the
element before the specified index, for a reason that will be clear below. The high end of the range
may be open, having the meaning "up to the end of the array". As the beginning of the array is
always 0, an open range starting from zero will include all elements of the array (and possibly
none). The following shows how a range is used:
var1 = "something"
list = ["person", 1, 3.5, int("123"), var1]
list1 = list[2:4] // 3.5, int("123")
list2 = list[2:] // 3.5, int("123"), "something"
list3 = list[0:3] // "person", 1, 3.5
list4 = list[0:] // "person", 1, 3.5, int("123"), "something"
list5 = list[:] // "person", 1, 3.5, int("123"), "something"

A range can contain negative indexes. Negative indexes means "distance from end", -1 being the
last item:
list1 = list[-2:-1] // the element before the last
list2 = list[-4:] // the last 4 elements.
list3 = list[-1:] // the last element.

Finally, an array can have a range with the first number being greater than the last one; in this
special case the last index is inclusive (note that the last element is counted in the resulting list).
This produces a reverse sequence:
list1 = list[3:0] // the first 4 elements in reverse order
list2 = list[4:2] // elements 4, 3 and 2 in this order
list3 = list[-1:4] // from the last element to the 4th
list4 = list[-1:0] // the whole array reversed.

Don't be confused about the fact that negative numbers are "usually" smaller than positive ones. A
negative array index means the end of the array -x, which may be smaller or greater than a positive
index. In an array with 10 elements, the element -4 is greater than the 4 (10-4 = 6), while in an array
of 6 elements, -4 is smaller than 4 (6-4 = 2).

Ranges can be independently assigned to a variable and then used as indexes at a later time:
if a < 5
 rng = [a:5]
else
 rng = [5:a]
end
array1 = array[rng]

Of course, both the array indexes and the range indexes may be a result from any kind of
expression, provided that expression evaluates to a number.

To access the beginning or the end of a range, you may use the array accessors; the index 0 is the
first element, and the index 1 (or -1) is the last. If the range is open, the value of the last element
will be nil.
rng = [1:5]
printl("Start: ", rng[0], "; End: ", rng[1])
rng = [1:]
printl("Will print nil: ", rng[1])
It is possible to assign items to array ranges:
b, c = 2, 3
list[0:2] = b // removes items 0 and 1, and adds b in their place
list[1:1] = c // inserts c at position 1.
list[1] = [] // puts an empty array in place of element 1
list[1:2] = [] // removes item 1, reducing the array size.

Falcon Survival Guide 20/130

As the last two rows of this example demonstrates, assigning a list into an array range causes all the
original items to be changed with the new list ones; they may be less, more or the same than the
original ones. In particular, assigning an empty list to a range causes the destruction of all the items
in the range without replacing them.

The fact that the end index is not inclusive allows for item insertion when using a range that does
not include any items: [0:0] mean "inserts some item at place 0", while [0:1] indicates exactly the
first item.

To extend a list it is possible to use the plus operator "+" or the self assignment operator:
a = [1, 2]
b = [3, 4]
c = a + b // c = [1, 2, 3, 4]
c += b // c = [1, 2, 3, 4, 3, 4]
c += "data" // c = [1, 2, 3, 4, 3, 4, "data"]
a += [] // a = [1, 2, []]
a[2] += ["data"] // a = [1, 2, ["data"]]

To remove selectively elements from an array, it is possible to use the "-" (minus) operator. Nothing
is done if trying to remove an item that is not contained in the array:
a = [1, 2, 3, 4, "alpha", "beta"]
b = a - 2 // b = [1, 3, 4, "alpha", "beta"]
c = a - [1, "alpha"] // c = [2, 3, 4, "beta"]
c -= 2 // c = [3, 4, "beta"]
a -= c // a = [1, 2, "alpha"]
a -= "no item" // a is unchanged; no effectArray manipulation functions
Falcon provides a set of powerful functions that complete the support for arrays. A preallocated
buffer containing all nil elements can be created with the arrayBuffer function:
arr = arrayBuffer(4)
arr[0] = 0
arr[1] = 1
arr[2] = 2
arr[3] = 3
inspect(arr)

This prevents unneeded resizing of the array when its dimension is known in advance.

To access the first or last element of an array, for example, in loops, arrayHead and arrayTail
functions can be used. They retrieve and then remove the first or last element of the array. For
example, to pop the last element of an array:
arr = ["a", "b", "c", "d"]
while arr.len() > 0
 > "Popping from back... ", arrayTail(arr)
end

It is possible to remove an arbitrary element with the arrayRemove function, which must be
given the array to work on and the index (eventually negative to count from the end). More flexible
are the arrayDel and arrayDelAll functions. The former removes the first element matching
a given value; the latter removes all the matching elements:
a = [1, 2, "alpha", 4, "alpha", "beta"]
arrayDelAll(a, "alpha")
inspect(a) // "alpha" has been removed

Falcon Survival Guide 21/130

The arrayFilter function is still more flexible and allows the performance of a bit of functional
programming over arrays (note that arrayFilter is similar to the filter() functional
construct that we'll see later on). This function calls a given function providing it with one element
at a time; if the function returns true, the given element is added to a final array, otherwise it is
skipped. We haven't introduced the functions yet, so just take the following example as-is:
function passEven(item)
 return item.type() == IntegerType and item % 2 == 0
end

array = [1, 2, 3, 4, "string", 5, 6]
inspect(arrayFilter(array, passEven))

To search for an element in an array, arrayFind and arrayScan functions can be used. The
arrayFind functions returns the index in the array of the first element matching the second
parameter, while arrayScan works like arrayFilter and returns the indexes at which the
called function returned true. For example:
a = [1, 2, "alpha", 4, "alpha", "beta"]
> "First alpha is found at... ", arrayFind(a, "alpha")

Be sure to read the Array function section in the Function Reference for more details on the topic.Comma-less arrays
When there are very long sequences of items, or when functional programming is involved, using a
comma to separate tokens can be a bit clumsy and error prone.

Commas offer a certain protection against simple writing errors, but once you gain a bit of
confidence with the language, it is easier to use the "dot-square" array declarator. The following
declarations are equivalent:
a1 = [1, 2, 3, 'a', 'b', var1 + var2, var3 * var4, [x,y,z]]
a2 = .[1 2 3 4 'a' 'b' var1 + var2 var3 * var4 .[x y z]]

When using this second notation, it is important to be careful about parenthesis as they may appear
to be function calls, strings (they may get merged, as we'll see in the next chapter), sub-arrays (they
may be interpreted as the index accessor of the previous item) and so on, but when programming in
a functional context, where function calls and in-line expression evaluations are rare if not
forbidden, this second notation may feel more natural.

The arrays declared with dot-square notation may contain commas if this is necessary to distinguish
different elements; in this case, consider putting the comma at the immediate left of the element that
they are meant to separate. For example, here's an array in which we need a range after a symbol:
array = .[somesym ,[1:2]]

In this case without the comma separating the two, the range would be applied to the preceding
symbol.Strings
Other than a basic type, strings can be considered a basic data structure as they can be accessed
exactly like arrays that only have characters as items. Characters are treated as single element
strings (they are just a string of length 1). It is possible to assign a new string to any element of an

Falcon Survival Guide 22/130

older one. Here is an example of the string functionality:
string = "Hello world"

/* Access test */
i = 0
while i <= len(string) - 1
 >> string[i], "," // H,e,l,l,o, ,w,o,r,l,
end
> string[-1] // d

/* Range access tests */
printl(string[0:5]) // Hello
printl(string[6:]) // world
printl(string[-1:6]) // dlrow
printl(string[-2:]) // ld
printl(string[-1:0]) // dlrow olleH

/* Range assignment tests */
string[5:6] = " - "
printl(string) // Hello - world
string[5:8] = " "
printl(string) // Hello world

/* Concatenation tests */
string = string[0:6] + "old" + string[5:]
printl(string) // Hello old world
string[0:5] = "Goodbye"
string[8:] = "cruel" + string[7:]
printl(string) // Goodbye cruel old world

/* end */

Assigning a string to a single character of another string will cause that character to be changed
with the first character from the other string:
string = "Hello world"
string[5] = "-xxxx" // "Hello-world", the x characters are not used

Multiline strings
Strings can span multiple lines; starting the string with a single/double quote followed directly by
an End Of Line (EOL) will cause the string to span on multiple lines, until another quote character
is found.
longString = "
 Aye, matey, this is a very long string.
 Let me tell you about my remembering
 of when men were men, women were women,
 and life was so great."

printl(longString)

You'll notice that the spaces and tabs in front of each line are not inserted in the final string; this is
to allow you to create wide strings respecting the indentation of the original block. To insert a
newline, the literal \n can be used. It is also possible to use the literal multiline string (see below).

To perserve the whole formating (to include newlines) in a string declaration one can use single
quotes. Here is a quick example.
str = '
ABC
123
'

dstr = "
ABC

Falcon Survival Guide 23/130

123
"

iStr = '
国際ストリング
国際ストリング
'

iDStr = "
国際ストリング
国際ストリング
"

> @ "1 $str"
> @ "2 $dstr"
> @ "3 $iStr"
> @ "4 $iDStr"

The above will output:
1 ABC
123

2 ABC 123
3 国際ストリング
国際ストリング

4 国際ストリング 国際ストリング

A finer control can achieved through explicit string concatenation, using the + operator (that can be
placed also at the end of a line to concatenate with the following string):
longString = "Aye, matey, this is a very long string.\n" +
 " Let me tell you about my remembering\n" +
 " of when men were men, women were women,\n" +
 " and life was so great."
printl(longString)

You will have a long string on the console.

Falcon strings support escape characters in C-like style: a backslash introduces a special character
of some sort. Suppose you want to format the above text so that every line goes one after another,
with a little indentation so that it is known as a "citation".
longString = "\t Aye, matey, this is a very long string.\n" +
 "\t Let me tell you about my remembering\n" +
 "\t of when men were men, women were women,\n" +
 "\t and life was so great."

printl(longString)

The \n sequence tells Falcon to skip to the next line, while the \t instructs it to add a "tab"
character, a special sequence of (usually) eight spaces.

Other escape sequences are the \", \\, \b and \r. The sequence \" will put a quote in the string, so that
it is possible to also print quotes; for example:
printl("This is a \"quoted\" string.")

The "\\" sequence allows the insertion of a literal backslash in the string, for example:
myfile = "C:\\mydir\\file.txt"

will be expanded into C:\mydir\file.txt

Falcon Survival Guide 24/130

The \r escape sequence is used to make the output restart from the beginning of the current line.
It's a very rudimentary way to print some changing text without scrolling the text all over the
screen, but is commonly used for effects like debug counters or console based progress indicators.
Try this:
i = 0
while i < 100000
 print("I is now: ", i++ , "\r")
end

Similarly, the \b escape causes the output to go back exactly one character.
print("I is now: ")
i = 0
while i < 100000
 print(i)
 if i < 10
 print("\b")
 elif i < 100
 print("\b\b")
 elif i < 1000
 print("\b\b\b")
 elif i < 10000
 print("\b\b\b\b")
 else
 print("\b\b\b\b\b")
 end
 i++
end
printl()International strings
Falcon strings can contain any Unicode character. The Falcon compiler can input source files
written in various encodings. UTF-8 and UTF-16 and ISO8859-1 (also known as Latin-1) are the
most common; Unicode characters can also be inserted directly into a string via escapes. For
example, it is possible to write the following statement:
string = "国際ストリング"
printl(string)

The printl function will write the contents of the string on the standard Virtual Machine output
stream. The final outcome will depend on the output encoding. The Falcon command line sets the
output stream to be a text stream having the encoding detected on the machine as output encoding.
If the output encoder is not able to render the characters they will be translated into "?". Another
method to input Unicode characters is to use numeric escapes. Falcon parses two kinds of numeric
escapes: "\0" followed by an octal number and "\x" followed by an hexadecimal number. For
example:
string = "Alpha, beta, gamma: \x03b1, \x03B2, \x03b3"
printl(string)

The case of the hexadecimal character is not relevant.

Finally, when assigning an integer number between 0 and 2^32 (that is, the maximum allowed by
the Unicode standard) to a string portion via the array accessor operator (square brackets), the given
portion will be changed into the specified Unicode character.
string = "Beta: "
string[5] = 0x3B2
printl(string) // will print Beta:β

Falcon Survival Guide 25/130

Accessing the nth character with the square brackets operator will cause a single character string to
be produced. However, it is possible to query the Unicode value of the nth character with the
bracket-star operator using the star square operator ([*]):
string = "Beta:β"
i = 0
while i < string.len()
 > string[i], "=", string[* i++]
end

This code will print each character in the string along with its Unicode ID in decimal format. If you
need to internationalize your program, you may want to examine the Program Internationalization
section.

String replication
It is possible to replicate a string a certain number of times using the * (star) operator. For example:
 sep = "-~*~-" * 12
 > sep
 > " "*25 + "Hello there!"
 > sep

Notice the expression " "*25 + "Hello there!", concatenating the result of the first string
expansion to the last part of the string.

String-to-number concatenation
Adding an item to a string causes the item to be converted to string and then concatenated. For
example, adding 100 to "value" ...
string = "Value: " + 100
> string // prints "Value: 100"

In the special case of numbers, it is possible to add a character by its unicode value to a string
through the % (modulo) operator. For example, to add an "A" character, whose unicode value is 65,
it is possible to do:
string = "Value: " % 64
> string // prints "Value: A"
string %= 0x3B2
> string // "Value: Aβ"

The / (slash) operator modifies the value of the last character in the string, adding to its UNICODE
value the value you provide. For example, to get 'd' from 'a' and the other way around:
d_letter = "a" / 3 // chr(ord('a') + 3) == 'd'
a_letter = d_letter / -3 // chr(ord('d') - 3) == 'a'
> a_letter, ", ", d_letterString polymorphism
In Falcon, to store and handle efficiently strings, strings are built on a buffer in which each
character occupies a fixed space. The size of each character is determined by the size in bytes
needed by the widest character to be stored. For Latin letters, and for all the Unicode characters
whose code is less than 256, only one byte is needed. For the vast majority of currently used
alphabets, including Chinese, Japanese, Arabic, Hebrew, Hindi and so on, two bytes are required.

Falcon Survival Guide 26/130

For unusual symbols like musical notation characters four bytes are needed. In this example:
string = "Beta: "
string[5] = 0x3B2
printl(string) // will print "Beta:β"

the string variable was initially holding a string in which each character could have been
represented with one byte.

The string was occupying exactly six bytes in memory. When we added β the character size
requirement changed. The string has been copied into a wider space. Now, twelve characters are
needed as β Unicode value is 946 and two bytes are needed to represent it.

When reading raw data from a file or a stream (i.e. a network stream), the incoming data is always
stored byte per byte in a Falcon string. In this way binary files can be manipulated efficiently; the
string can be seen just as a vector of bytes as using the [*] operator gives access to the nth byte
value. This allows for extremely efficient binary data manipulation.

However, those strings are not special. They are just loaded by inserting 0-255 character values into
each memory slot, which is declared to be 1 byte long. Inserting a character requiring more space
will create a copy of each byte in the string in a wider memory area.

Files and streams can be directly loaded using transcoders. With transcoder usage, loaded strings
may contain any character the transcoder is able to recognize and decode.

Strings can be saved to files by both just considering their binary content or by filtering them
through a transcoder. In the case that a transcoded stream is used, the output file will be a binary file
representing the characters held in the string as per the encoding rules.

Although this mixed string valence, that uses fully internationalized multi-byte character sequences
and binary byte buffers, could be confusing at first, it allows for flexible and extremely efficient
manipulation of binary data and string characters depending on the need.

It is possible to know the number of bytes occupied by every character in a string through the
String.charSize method of each string; the same method allows to change the character size
at any moment. See the following example:
str = "greek: αβγ"
> str.charSize() // prints 2
str.charSize(1) // squeeze the characters
> str // "greek: " + some garbage

This may be useful to prepare a string to receive international characters at a moment’s notice,
avoiding paying the cost for character size conversion. For example, suppose you're reading a text
file in which you expect to find some international characters at some point. By configuring the size
of the accumulator string ahead of time you prevent the overhead of determining character byte size
giving you a constant insertion time for each operation:
str = ""
str.charSize(2)
file = ...

while not file.eof()
 str += file.read(512)
end

Valid values for String.charSize() are 1, 2 and 4

Falcon Survival Guide 27/130Literal Strings
Strings can be also declared with single quotes, like this:
str = 'this is a string'

The difference with respect to the double quote is that literal strings do not support any escape
sequence. If you need to insert a single quote in a literal string, use the special sequence '' (two
single quotes one after another), like in the following example:
> 'Hello ''quoted'' world!' // Will print "Hello 'quoted' world"

Parsing of literal strings is not particularly faster or more efficient than parsing of standard strings;
they have been introduced mainly to allow short strings with backslashes to be more readable. For
example, they are useful with Regular expressions where backslashes already have a meaning.

When used as multiline strings, single quoted strings will include all the EOL and blanks present in
the source. For example:
multi = '
 Three spaces before me...
 And four here, and on a new line
 and now five on the final line.'

printl(multi)String expansion operator
Many scripting languages have a means to "expand" strings with inline variables. Falcon is no
exception, and actually it adds an important functionality to currently known and used string
expansion constructs: inline format specifications. This combination allows for an extreme precise
and powerful "pretty print" construct which we are going to show now in detail.

Strings containing a "$" followed by a variable can be expanded using the unary operator "@". For
example:
value = 1000
printl(@ "Value is $value")

This will print "Value is 1000". Of course, the string can be a variable, or even composed of many
parts. For example:
value = 1000
chr = "$"
string = "Value is " + chr +"value"
> "Expanding ", string, " into ", @ string

The variable after the "$" sign is actually interpreted as an "accessible" variable; this means that it
may have an array accessor like this:
array = [100, 200, 300]
printl(@ "Array is $array[0], $array[1], $array[2]")
Actually, everything parsed inside an accessor will be expanded. For example:
array = [100, 200, 300]
value = 2
printl(@ "The selected value is $array[value]")

The object member "dot" accessor can also be used and interleaved with the array accessor; but
we'll see this in the character dedicated to objects. For now, just remember that a "." cannot

Falcon Survival Guide 28/130

immediately follow a "$" symbol, or it will be interpreted as if a certain property of an object were
to be searched.
printl(@ "The selected value is $(array[value]).")

In this way the parser will understand that the "." after the array[value] symbol is not meant to be a
part of the symbol itself. A string literal may be used as dictionary accessor in an expanded string
either by using single quotes (') or escaping double quotes, but always inside parenthesis, as in this
example:
dict = ["a" => 1, "b" => 2]
> @ "A is $(dict['a']), and B is $(dict[\"b\"])"

To specify how to format a certain variable, use the ":" colon after the inlined symbol name and use
a format string. A format string is a sequence of commands used to define how the expansion should
be performed; a complete exposition is beyond the scope of this guide (the full reference is in the
function reference manual, in the "Format" class chapter), but we'll describe a minimum set of
commands here to explain basic usage:

• A plain number indicates "the size of the field"; that is, how many characters with which the
output should be wrapped.

• the 'r' letter forces alignment to the right.
• A dot followed by a plain number indicates the number of decimals.

For example, to print an account book with 3 decimal precision, do the following:
data = ['a' => 1.32, 'b2' => 45.15, 'k69' => 12.4]

for id, value in data
 printl(@ "Account number $(id:3):$(value:8.3r)")
end

The result is:
Account number a : 1.320
Account number b2 : 45.150
Account number k69: 12.400

As it can be seen, the normal (left) padding was applied to the ID while the right padding and fixed
decimal count was applied to the value. Formats can be also applied to strings and even to objects,
as in this example:
data = ["brown", "smith", "o'neill", "yellow"]
i = 0
while i < data.len()
 value = data[i++]
 printl(@ "Agents in matrix:$(value:10r)")
end

The result is:
Agents in matrix: brown
Agents in matrix: smith
Agents in matrix: o'neill
Agents in matrix: yellow

The sequence "$$" is expanded as "$". This makes possible to have iterative string expansions like
the following:
value = 1000
str = @ "$$$value"

Falcon Survival Guide 29/130

printl(str)

Or more compactly:
value = 1000
str = "$$$value"
> @ str

In case of a parsing error, or if a variable is not present in the VM (i.e. not declared in the module
and not explicitly imported), or if an invalid format is given, an error will be raised that can be
managed by the calling script. We'll see more about error raising and management later on.String manipulation functions
Falcon provides functions meant to operate on strings and make string management easier. Classic
functions such as trim (elimination of front/rear blank characters), uppercase/lowercase
transformations, split and join, substrings and so on are provided. For example, the following code
will split "Hello world" and work on each side:
h, w = strSplit("Hello world", " ")
> "First letter of first part: ", strFront(h, 1)
> "Last letter of the second part: ", strBack(w, 1)
> "World uppercased: ", strUpper(w)

Several interesting functions are strReplicate that builds a "stub" sequence repeating a string,
and strBuffer, which creates a pre-allocated empty string. A string allocated with strBuffer
can then be used as buffer for memory based operations such as iterative reading of data blocks
from binary files.

For more details on Falcon's support of strings, read the String functions section in the Function
Reference.Dictionaries
The most flexible basic structure is the Dictionary. A dictionary looks like an array that may have
any object as its index. Most notably, the dictionary index may be a string. More formally, a
dictionary is defined as a set of pairs, of which the first element is called key and the second value.
It is possible to find a value in a dictionary by knowing its key. Dictionaries are defined using the
arrow operator (=>) that couples a key with its value. Here is a minimal example:
dict = [=>] // creates an empty dictionary
dict = ["a" => 123, "b" => "onetwothree"]
printl(dict["a"] ,":", dict["b"]) // 123:onetwothree

Of course, the keys and values can be expressions, resulting in both in dictionary definition and in
dictionary access:
a = "one"
b = "two"
dict = [a + b => 12, a => 1, b => 2]
printl(dict["onetwo"]) // 12
printl(dict[a + b]) // 12 again

Dictionaries do not support ranges. To extend a dictionary, it is possible to just name an nonexistent
key as its index; if the element is an already existing key, the value associated with that key is
changed. If it's a nonexistent key the pair is added:
dict = ["one" => 1]

Falcon Survival Guide 30/130

dict["two"] = 2
dict["three"] = 3
// dict is now ["one" => 1, "two" => 2, "three" => 3]

It is also possible to “sum” two dictionaries; the resulting dictionary is a copy of the first addend,
with the items of the second added being inserted over the first one. This means that in case of
intersection in the key space, the value of the second addend will be used:
dict = ["one" => 1, "two" => 2] + ["three" => 3, "four" => 4]
// dict is now ["one" => 1, "two" => 2, "three" => 3, "four" => 4]

dict = ["one" => 1, "two" => 2] + ["two" => "new value", "three" => 3]
// dict is now ["one" => 1, "two" => "new value", "three" => 3]

dict += ["two" => -2, "four" => 4]
// dict is now ["one" => 1, "two" => -2, "three" => 3, "four" => 4]

On the other hand, accessing an nonexistent key will raise an error, like trying to access an array out
its bounds:
dict = ["one" => 1]
printl(dict["two"]) // raises an error

To selectively remove elements from a dictionary, it is possible to use the “-” (minus) operator.
Nothing is done if trying to remove an item that is not contained in the dictionary:
a = [1=>'1', 2=>'2', "alpha"=>0, "beta"=>1]
b = a - 2 // b = [1=>'1', "alpha"=>0, "beta"=>1]
c = a - [1, "alpha"] // c = [2=>'2', "beta"=>1]
c -= 2 // c = ["beta"=>1]
a -= b // a = [2=>'2']
a -= "no item" // a is unchanged; no effect

Dictionary support functions
Falcon offers some functions that are highly important to complete the dictionary model. For
example, the most direct and simple way to remove an item from a dictionary is to use the
dictRemove function (or remove method):
a = [1=>'1', 2=>'2', "alpha"=>0, "beta"=>1]
dictRemove(a, "alpha")
inspect(a) // alpha is not in the dictionary anymore.

a.remove("beta")
inspect(a) // and now, beta is gone too.

It is also possible to remove all the elements using the dictClear function or clear method). Other
interesting functions are dictKeys and dictValues (again, with corresponding dictionary methods
keys and values), which create a vector containing respectively all the keys and all the values in the
dictionary.

Serious operations on dictionaries require the recording of a position and proceeding in some
direction. For example, in the case it is necessary to retrieve all the values having a key which starts
with the letter “N”, it is necessary to get the position of the first element whose key starts with “N”
and the scan forward in the dictionary until the key changes first letter or the end of the dictionary is
reached.

To work on dictionaries like this, Falcon provides two functions called dictFind and dictBest (or
find and best methods), which return an instance of a class called Iterator. We'll see more about
iterators in the next sections.

Falcon Survival Guide 31/130

Be sure to read the section called Dictionary functions in the function reference.Lists
We have seen that arrays can be used to add or remove elements randomly from any position.
However, this has a cost that grows geometrically as the size of an array grows. Insertion and
removal in lists are more efficient, by far, when the number of elements grows beyond the size a
simple script usually deals with. Switching from arrays to lists should be considered at about 100
items.

Contrary to strings, arrays and dictionaries, Lists are full-featured Falcon objects. They are a class,
and when a list is created, it is an instance of the List class. Objects and classes are described in a
further chapter, but Lists are treated here for completeness.

A list is declared by assigning the return value of the List constructor to a variable.
l = List("a", "b", "c")
Operations that can be performed on a list are inspection of the first and last element and
insertion and removal of an element at both sides.
Some examples below:
> "Elements in list: ", l.len()
> "First element: ", l.front()
> "Last element: ", l.back()

// inserting an element in front
l.pushFront("newFront")
> "New first element: ", l.front()

// Pushing an element at bottom
l.push("newBack")
> "New first element: ", l.back()

// Removing first and last element
l.popFront()
l.pop()
> "Element count now: ", l.len()

Lists also support iterator access; it's possible to traverse a list, insert or remove an element from a
certain position through an iterator or using a for/in loop. We'll treat those arguments below.The "in" operator
The in relational operator checks for an item to its left to be present in a sequence to its right. It
never raises an error, even if the right operand is not a sequence; instead, it assumes the value of
true (1) if the item is found or 0 (false) if the item is not found, or if the right element is not a
sequence.

The in operator can check for substrings in strings, or for items in arrays, or for keys in dictionaries.
This is an example:
print("Enter your name > ")
name = input()

if "abba" in name
 printl("Your name contains a famous pop group name")
end

dict = ["one" => 1]
if "one" in dict
 printl("always true")
end

Falcon Survival Guide 32/130

There is also an unary operator notin working as not (x in name):
if "abba" notin name
 printl("Your name does not contain a famous pop group name")
endThe for/in loop
The for/in loop traverses a collection of items (an array, a dictionary, a list or other
application/module specific collections), usually from the first item to the last one, and provides the
user with a variable assuming the value of each element in turn. The loop can be interrupted at any
point using the break statement, and it is possible to skip immediately to the next item with the
continue statement. The value being currently processed can be changed with a special operator,
called “dot assign”, and the continue dropping statement discards the currently processed item,
continuing the processing loop from the next one.

The for/in loop can also be applied to strings, where it picks all the characters from the first to the
last, and to ranges, to generate sequences of integer numbers. A special application of the for/in loop
to ranges is the for/to loop, which follows a slightly different semantics.

Other than the main body, the for/in loop can contain three special blocks: forfirst, forlast
and formiddle blocks can contain code that is respectively executed before the first item, after
the last item, and after every item that is not the last (between items, essentially).

Loop control statements (namely break, continue and continue dropping) being declared in the main
block will prevent formiddle and forlast blocks from being executed. If they are contained
in the forfirst block, even the main block for the first item is skipped, as forfirst block is
executed before the main block.

This is the formal declaration of the for/in block:
for variable[,variable...] in collection
 ...statements...
 [break | continue | continue dropping]
 ...statements...

 forfirst
 ... first time only statements ...
 end

 formiddle
 ... statements executed between element processing ...
 end

 forlast
 ... last time only statements ...
 end
end

The forfirst, forlast and formiddle blocks can be declared in any order or position; actually,
the can even be interleaved with the main for/in block code; the code will just be separated and
executed sequentially. As with any block, they can be abbreviated using the “:” colon shortcut.

This example will print “Contents of the array: Have a nice day!” on a single line.
array = ["Have", "a", "nice", "day"]

for element in array
 forfirst: print("Content of the array: ")

 // this is the main for/in body
 print(element)

Falcon Survival Guide 33/130

 formiddle: print(" ")
 forlast: printl("!")
end

Using forfirst and forlast blocks in the for/in loop will allow actions to take place only
if the collection is not empty, exactly before the first element and after the last one. Using those
blocks, there isn't the need of extra checks around the collection traversal loop. Also, the special
blocks in the for/in loop are managed at VM level, and are considerably faster than using
repeated checks in a normal loop.

An empty set, that is, an array or a dictionary with no elements, will cause the for/in loop to be
skipped altogether. A nil value will be interpreted as an empty set, so the following:
array = nil

for element in array
 print(element, " ")
end

will just be just skipped. A for/in loop applied to a dictionary requires two variables to be used; the
first one will receive the current key, and the second one will store the entry value:
dict = ["Have" => 1 , "a" => 2, "nice" => 3, "day" => 4]

for key, value in dict
 printl("Key: ", key, " Value: ", value)
end

This technique will also work with multidimensional arrays, provided that every element is an array
of the same size:
matrix = [[1, 2, 3], [3, 4, 5], [5, 6, 7]]

for i1, i2, i3 in matrix
 printl(i1, ",", i2, ",", i3)
end

The values which are retrieved in the for/in loop can also be changed on the fly. To do this, use the
unary operator “.=” (called dot-assign), that changes the currently scanned item without altering the
loop variable, like in this example:
array = [1, 2, 3 ,4, 5]

for elem in array
 .= 0 // sets all the array elements to zero...
 printl(elem) // ... but prints the original items
end

for elem in array
 printl(elem) // prints five zeros
end

In the case of a dictionary being traversed the function dot-assign operator will also change the
current value of the dictionary. The current key of a dictionary cannot be changed.

To remove an item from a collection, use the continue dropping statement; for example, the
following code will filter the source array so that only even numbers are left:
array = [1, 2, 3, 4, 5]

for elem in array
 if elem % 2 == 1
 continue dropping

Falcon Survival Guide 34/130

 end
 printl("We accepted the even number: ", elem)
end

As shown, the continue dropping statement will also skip the rest of the main for/in body, as well as
formiddle and forlast blocks, if present.

For/in ranges
The range based for/in loop is an efficient way to generate increasing or decreasing values. The
target variable of the for/in is filled each loop with an integer value.

If the range beginning is lower than the end, the index variable will be filled with values from the
beginning, included, to the end, excluded. So:
for value in [1:10]
 printl(value)
end

will print a sequence between 1 and 9. Contrarily, if the beginning of the range is higher than the
end, the variable will be filled with decreasing values, including the end limit. This resembles the
way that ranges are used to extract substrings or subarrays.

If the range is open, or if it is empty ([n:n]), then the for/in loop is completely skipped.

The continue dropping statement is performed, but it is translated to a simple continue. The dot-
assignment has no effect.

Ranges in for/in loop support steps; a third parameter may be specified in the range to indicate a
stepping value; for example, the following loop shows the pair numbers between 0 and 10:
for value in [0: 11: 2]
 > value
end

If the step is zero, or if it's greater than zero when the loop would be descending or if it's less than
zero when the loop would be ascending, the for/in statement is skipped. In case the direction of the
loop is unknown because of variable parameters, the step can be used to ensure a certain processing
order:
array = [1, 2, 3, 4, 5]
for index in [start : len(array) : 1] // so if start too high, we'll just skip
 > array[index]
end

For/to loops
The for/to loop works as a for/in loop in ranges, but it includes the upper limit of the range. It is
declared as:
for variable = lowerbound to upperbound [, step]
 // for/to body, same as for/in
end

For example, this will count 1 to 10 included, treating 1 and 10 a bit specially:
for i = 1 to 10
 forfirst: >> "Starting: "

 >> i

Falcon Survival Guide 35/130

 formiddle: >> ", "
 forlast: > "."
end

The step clause works exactly as in for/in ranges, declaring the direction of a loop and eventually
having the loop skipped if the direction is wrong. For example, this prints all the pair numbers
between 1 and 10 included:
for i = 2 to 10, 2
 > i
end

For/in lists
Lists can be processed through a for/in loop exactly as arrays. Positional blocks will work as for any
other type; continue dropping statement removes the current element, while the dot assign operator
changes the value of the current element. For example:
list = List("Have", "a", "nice", "day")
for value in list
 forfirst: >> "The list is... "
 >> value
 formiddle: >> " "
 forlast: > "!"
end

Although lists can also be traversed with iterators, the for/in loop is completely VM driven, and thus
it is more efficient; it also uses a simpler internal representation of the iterator, sparing memory.

Iterators have a small chapter on their own, as they are tightly bound with the Object Oriented
Programming paradigm supported by Falcon; so, they will be presented after the chapter in which
OOP support is described.

For/in generators
The for/in loop supports genetator functions since version Eagle (0.9.4). As we didn't introduce
functions and other functional programming elements useful for this construct, we'll descend in
details of this structure in the List Comprehension chapter.Memory buffers
Memory buffers are “tables” of raw memory which can be directly manipulated through Falcon
scripts. They are mainly meant to access binary streams or to represent memory mapped data (as
images). They may be also used by modules and applications to pass a set of data in a very efficient
way to the script, or the other way around, as each access to them refers to a small unsigned integer
value in memory. Memory buffers can be sequences of numbers occupying one to four bytes
(including three bytes, which is a quite common size for memory mapped images).

Memory buffers cannot grow nor shrink, and it is not possible to access a subrange of them. From a
script standpoint, they are table of small integer values. Consider the following example:
memory = MemBuf(5, 2) // creates a table of 5 elements, each 2 bytes long.
for value in [0:5]
 memory[value] = value * 256
end

inspect(memory)

http://kib2.free.fr/Falcon/sg/Basic%20Datatypes.html

Falcon Survival Guide 36/130

The inspect function will show a set of two-bytes binary data inside the buffer:
MemBuf(5,2) [
0000 0100 0200 0300 0400]

Hexadecimal 0100 value equals 256, 0200 is 512 and so on.

Functions dealing with files may be given a string or a memory buffer to fill. In the second case,
manipulation of binary data may be easier. Strings can be used to manipulate binary data too (as it is
possible to access their content by the value of each character), but memory buffers are more fit for
that task.Bitwise operators
Dealing with binary data often requires checking, setting or resetting specific bits. Falcon support
bitwise operations on integer data (memory buffer elements, string characters accessed by numeric
value or integer items).

The bitwise and '&&', bitwise or '||', bitwise xor '^^' and bitwise not '~' operators allow the changing
bits of integer values through binary math. And, or and xor operator are binary, while not operator is
unary. For example,
value = 0x1 || 0x2 // or bits 0 and 1

// display binary:
> @"$(value:b)b = $(value:X)H = $value"

value = value && 0x1 // turns off bit 2
> @"$(value:b)b = $(value:X)H = $value"

value = ~value && 0xFFFF // Shows first 2 bytes of reversed value
> @"$(value:b)b = $(value:X)H = $value"

value = value ^^ 0x3 // turns off bit 2 and on bit 1
> @"$(value:b)b = $(value:X)H = $value"

Shift operators are also provided. Shift left “<<” and shift right “>>” allow moving bits at an
arbitrary position:
for power in [0:16]
 value = 1 << power
 > @"2^$(power:2r): $(value:b17r)b = $(value:X4r)H = $value"
end

And, or, xor, shift left and shift right operators are also provided in the short assignment version; for
brevity, and, or and xor assignments are respectively “&=”, “|=” and “^=”, while to avoid confusion
with relational operators shift left and shift right assignments are indicated with “<<=” and “>>=”.
value = 0xFF00 // set an initial value
value &= 0xF00F // Try an and...
> @"$(value:X)H" // shall be F000H

value >>= 4 // drag a semibyte to the right
> @"$(value:X)H" // shall be F00HThe functions
Functions are pieces of code that may be reused again and again by providing them with different
values called parameters . More formally, functions are relational operators that relate a set of zero

Falcon Survival Guide 37/130

or more values (called parameters) that can be taken from a finite or infinite set of possible values
(called a dominion) with exactly one item that can be taken from a finite or infinite set of possible
values (called a co-dominion).

Meet our first function:
function do_something(parameter)
 printl("Hey, this is a function saying: ", parameter)
end

do_something("Hello world")
do_something(15)
/* again, ad libitum */

Functions are declared by the function keyword, followed by a symbol and two parenthesis
which can contain a list of zero or more parameters. In this case, the function doesn't return any
value; actually this is an illusion, because a function that does not return explicitly a value will be
considered as returning the special value nil.

Functions can even be declared after being used:
do_something("Hello world")
do_something(15)

function do_something(parameter)
 printl("Hey, this is a function saying: ", parameter)
end

All the code that is not in a function is considered to be "the main program"; function lines are kept
separated from normal code, and so it is possible to intermix code and functions like this:
do_something("Hello world")

function do_something(parameter)
 printl("Hey, this is a function saying: ", parameter)
end

do_something(15)

Anyhow, it is very important to have a visual reference to where the "real program" begins, if it ever
does, so in real scripts you should really take care to separate functions from the other parts of the
script, and show clearly where the function section or main section begins:
/*
 This is my script
*/

do_something("Hello world")
do_something(15)

/*************************************
 Main section over,
 starting with functions.
**************************************/

function do_something(parameter)
 printl("Hey, this is a function saying: ", parameter)
end

Or if you prefer a bottom-top approach:
/*
 This is my script
*/

function do_something(parameter)

Falcon Survival Guide 38/130

 printl("Hey, this is a function saying: ", parameter)
end

/*************************************
 Main program begins here.
**************************************/

do_something("Hello world")
do_something(15)

As many other statements, functions executing just one statement may be abbreviated with the
colon indicator (":").

Functions are not just useful to do something, but also to return some values:
function square(x)
 y = x * x
 return y
end

or more briefly:
function square(x): return x * x

Return will immediately exit the function body and return the control to the calling code. For
example:
function some_branch(x)
 if x > 10000
 return "This number is too big"
 end

 /* do something */
 return "Number processed"
 end

The first return prevents the rest of the function to be performed. It is also possible to return from
inside loops.

A function may be called with any number of parameters. If less than the declared parameters are
passed to the function, the missing ones will be filled with nil.

Recursiveness
Functions can call other functions, and surprisingly, they can also call themselves. The technique of
a function calling itself is called recursion. For example, you may calculate the sum of the first N
numbers with a loop, but this is more fun:
function sum_of_first(x)
 if x > 1
 return x + sum_of_first(x - 1)
 end

 return x
end

Explaining how to use the recursion (and when to prefer it to a loop) is beyond the scope of this
document but if you’re interested here is a start point.

Local and global variable names
Whenever you declare a parameter or assign variable in a function for the first time, that name

http://kib2.free.fr/Falcon/sg/The%20functions.html

Falcon Survival Guide 39/130

becomes "local". This means that even if you declared a variable with the same name in the main
program, the local version of the variable will be used instead. This prevents accidentally
overwriting a variable that may be useful elsewhere; look at this example.
sqr = 1.41

function square(x)
 sqr = x * x
 return sqr
end

number = square(8) * sqr

If the sqr name inside the function were not protected, the variable in the main program would
have been overwritten.

Global variables can be accessed by functions, but normally they cannot be overridden. For
example :
sqr = 1.41

function square(x)
 printl("sqr was: ", sqr)
 sqr = x * x
 return sqr
end

number = square(8) * sqr

will print 1.41 in the square function; however, when the sqr variable is rewritten in the very
next line, this change is visible only to the function that caused the change.

Anyhow, sometimes it's useful to modify to an external variable from a function without having that
variable being passed as a parameter. In this case, the function can "import" the global variable with
the keyword global .
function square_in_z(x)
 global z
 z = x * x
end

z = 0
square_in_z(8)
printl(z) // 64

Static local variables and initializers
Sometimes it's useful to have a function that remembers how its variables were configured when it
was last called. Using global imported names could work, but is inelegant and dangerous as the
names may be used to do something beyond the control of the function. Falcon provides a powerful
construct that is called a "static initializer". The statements inside the static initializer are executed
only once, the first time the function is ever called, and the variables that are assigned in it are then
"recorded", and they stay the same up to the next call.

This example shows a loop that iteratively calls a function with a static initializer. Each time it’s
called, the function returns a different value:
function say_something()
 static
 data = ["have", "a", "nice", "day"]
 current = 0
 end

Falcon Survival Guide 40/130

 if current == len(data)
 return
 end

 element = data[current]
 current += 1
 return element
end

thing = say_something()
while thing != nil
 print(thing, " ")
 thing = say_something()
end
printl()

The first time say_something is called, the static statements are executed, and two static variables
are initialized. The static block can contain any statement, and be of any length, just any local
variables that are initialized in the static block will retain their value across calls.

We have also seen the nil special value in action; when the function returns nothing, signaling that it
has nothing left to say, the thing variable is filled with the nil special value, and the loop is
terminated.Anonymous and nested functions
Normally, functions are top-level statements. This means that the "parent" of a function must be a
Falcon module. Anyhow, on need however it is possible to create locally visible functions.

The keyword innerfunc can be used to define a new nested function that spawns from its
definition to the relative end keyword. The function must be immediately assigned to a local or
global variable:
var = innerfunc ([param1, param2, ..., paramN])
 [static block]
 [statements]
end

The following is a working example:
square = innerfunc (a)
 return a * a
end

printl("Square of 10: ", square(10))

Anonymous functions can be nested, and generally manipulated as variables, as the following
example demonstrates:
function test(a)
 if a == 0
 res = innerfunc (b, c)
 // nested anonymous function!
 l = innerfunc (b)
 return b * 2
 end
 result = b * l(c) + 1
 return result
 end
 else
 res = innerfunc (b, c); return b * c -1; end
 end

 return res
end

Falcon Survival Guide 41/130

// instantiates the first anonymous function
func0 = test(0)

// instantiates the second anonymous
func1 = test(1)

printl("First function result:", func0(2, 2))
printl("Second function result:", func1(2, 2))

Anonymous functions are useful constructs to automatize processes. Instead of coding a workflow
regulated by complex branches, it is possible to select, use and/or return an anonymous function,
reducing the size of the final code and improving readability, maintainability and efficiency of the
program.

As with any other callable item, anonymous functions can also be generated by a factory function
and shared across different modules.

To exploit this feature to its maximum, it is important to learn to think in terms of providing the
higher levels (the main script) not just with data to process, but also with code to perform tasks.Function closure
Function closures, or nameless functions , act as inner functions that may cache the value of the
local variables (and parameters) of the context in which they were declared. They are declared
through the function keyword, and work exactly as "inner functions", except for the fact that
they perform a closure on their context.

Take the following example:
function makeMultiplier(operand)
 multiplier = function(value)
 return value * operand
 end

 return multiplier
end

m2 = makeMultiplier(2) // ... by 2
> m2(100) // will be 200

m4 = makeMultiplier(4) // ... by 4
> m4(100) // will be 400

At the moment, closure can access and close only the local symbols in the direct parent. They won't
close symbols from the global scope nor from any other surrounding function other than their
parent's; however is it possible to repeat a global variable or an outer scoped variable to the
immediate parent by simply naming it to have it reflected, as in the following sample:
function makeMultiplierGlobal()
 global globalFactor

 g = globalFactor // repeat locally

 multiplier = function (value)
 return value * g
 end

 return multiplier
end

globalFactor = 2
m2 = makeMultiplierGlobal() // ... by 2
> m2(100) // will be 200

Falcon Survival Guide 42/130

globalFactor = 4
m4 = makeMultiplierGlobal() // ... by 4
> m4(100) // will be 400

Inner functions and nameless functions are actually expressions. The first example may be rewritten
as:
function makeMultiplier(operand)
 return (function (value);
 return value * operand;
 end)
end

Notice the extra ";" after each line. In an open parenthesis context, EOL is not considered a
statement terminator anymore; the termination of the statement must be explicitly indicated through
the semicolon symbol. As such, the whole statement may be rewritten on a line:
function makeMultiplier(o): return (function (v); return v * o; end)Codeblocks
Codeblocks are mainly a syntactic sugar for nameless functions, especially for functions just
needing to perform an expression and return its value.

The formal declaration of lambda expression is the following:
block = { [p1, p2..., pn] => expression }
// or

block = { [p1, p2..., pn] =>
 statement
 ...
}

where p1 ... pn is an optional list of parameters.

Actual parameter values can be fed through the function call operator (open and close round
parenthesis). For example, to print the sum of a number a rather complex way may be:
printl({a, b => a + b}(2,2))

Notice that codeblocks are functional closures, so:
function makeMultiplier(o): return { v => v * o }
multBy2 = makeMultiplier(2)
> multBy2(100) // will be 200

Codeblocks containing more than one single expression are totally equivalent to nameless
functions; as for nameless functions, it is necessary to return a value from within them to make it
visible in the caller. For example:
posiSum = { a, b =>
 val = a + b
 if val < 0: return -val
 return val }

> posiSum(-5, 1) // 4
> posiSum(5, 1) // 6

Falcon Survival Guide 43/130Callable arrays
When the first element of an array is a function, the array becomes "callable". Applying the function
call operator to it, the function used as first element is called. Other elements in the array are passed
to the function as parameters; other parameters may be passed to the function normally, through the
call operator.

For example, the following code always prints "hello world".
printl("Hello world")
[printl]("Hello world")
[printl, "Hello"](" world")
[printl, "Hello", " ", "world"]()

It is then possible to create pre-cached parameters functions. For example, to prepend every call to
printl with a prompt, the following code may be used:
p_print = [printl, "prompt> "]
p_print("Hello world!")

An interesting usage of arrays as functions with pre-cached parameters is that to store an item in the
array by reference. Item references will be shown in a future chapter, but consider the following
code:
i = 0
icall = .[printl $i ": "]
for i in [0:10]: icall("Looping...")

Notice that in this code we have used the dot-square array declarator to avoid using commas
between tokens.

The "$i" code extracts a reference out from the "i" variable; the called function will be then
presented with the current value of the desired variable, and not with the value that it had when the
callable array was created.

Callable arrays are considered callable items in every aspect. For example, they can be used
everywhere a function is needed as a parameter (I.e. the arrayFilter() function), or in place of
methods for objects.Accessing the calling context
At times, it is useful to know:

• Who is the caller of a function.
• In which function we're currently working.

The keyword fself assumes the value of the currently executed function. It is syntactically
equivalent to use the name of the function in which the fself keyword is used. For example:
function sumFirst_1(n)
 return n <= 1 ? 1 : n + sumFirst_1(n-1)
end

// this is equivalent
function sumFirst_2(n)
 return n <= 1 ? 1 : n + fself(n-1)
end

The fself keyword comes handy when the name of the current function is not known, as for code

Falcon Survival Guide 44/130

blocks and nameless functions.
> "Sum of first 30 numbers: ", { n => n <= 1 ? 1 : n + fself(n-1) } (30)

The caller method can be applied to functions to discover who called them.
function recurse(val)
 if val <= 0: return 1
 > recurse.caller(), ":", val // or fself.caller()
 return recurse(val-1) + val
end

recurse(5)

We'll see that when the caller is a method, this comes quite useful as we can guess which object
originated a call for us.Non positional parameters
It is possible to address function parameters by names through a construct called future binding. In
short, a parameter with a given name can be filled by adding a '|' (pipe) sign after a single-word
symbol, and giving a value or an expression right after. See the following example:
function f(alpha, beta, gamma)
 > @"alpha: $alpha"
 > @"beta : $beta"
 > @"gamma: $gamma"
end

f(gamma| "a" + "b" + "c", beta|"b-value")

This sets nil in alpha, "b-value" in beta and "abc" in gamma. The interesting point about "future
bindings" is that they are actually expression; so the above f call is equivalent to:
future_beta = beta|"b-value"
future_gamma = lbind("gamma", "a" + "b" + "c")
f(future_gamma, future_beta)

The lbind function can create late and future bindings; it's less efficient than the pipe operator, but
it's more flexible as it can create bindings with arbitrary names.

A future binding value gets expanded in any function call, including callable array calls. Calling a
function with a future binding having a name not matching any parameter name raises an error, like
in the following case:
 f(non_existing|"value") // raises an error!

It is possible to mix positional and non-positional parameters in the same call. In that case, the
positional parameters are applied first, then all the non positional parameters (no matter where they
appare in call order) are applied to the matching parameters. This may lead to effectively overwrite
a value given in a positional parameter, as in the following example:
 f(beta| "new value for beta", "in alpha", "in beta")

As the first positional parameter is stored in alpha, the second in beta, and then the beta parameter is
overwritten by the named parameter, the result is the following:
alpha: in alpha
beta : new value for beta
gamma: Nil

Falcon Survival Guide 45/130Functional programming
According to Wikipedia's definition:

Functional programming is a programming paradigm that treats computation as the
evaluation of mathematical functions and avoids state and mutable data. It emphasizes
the application of functions, in contrast with the imperative programming style that
emphasizes changes in state.

As Falcon provides a hybrid model, where the user can chose "how much functional" its code will
be, we present some novel nomenclature to identify functional programming entities. Experts will
recognize well known concepts from lambda calculus and former languages as LISP or Scheme
being given new names, but as some concepts fit while other are slightly overlapping or not fully
compliant with pre-existing theory, we decided to present a completely new nomenclature to avoid
confusion. Otherwise, we should have borrowed names and indicated where they fit and where not.
Moreover, the relatively novel concept of "optional" functional programming, where in the past it
has been more or less the only paradigm of programming languages implementing it, requires a
slightly different approach that justifies new names even for old things.

Before going into the new nomenclature, a bit of context information may be useful to
those ones knowing functional programming. Falcon functional programming is an
"impure" model (functional with "side effects") with strict evaluation. Actually,
evaluation is "strict", that is, parameters are evaluated before functions, only if not
explicitly required differently by the user through "constructs". Despite being impure,
Falcon supports monadic programming. It is inherently possible to create pure
functions with monads, and have various form of lazy evaluation, but this is currently
not used by the VM to optimize calculus and is not "forced". Means to achieve this are
just provided to the programmers for their usage.The theory

In this paragraph we explain formally how functional paradigm works in Falcon. In the next
paragraph, we'll proceed with samples and introduce terminology little by little, so it is not
necessary to read and understand this paragraph to proceed further. However, it is strongly
advisable to gain confidence with the formalization of the paradigm, as understanding its working
model may spare from some misunderstanding and headaches in using this features. In case this
paragraph seems too abstract, it may be a good idea to start from the example and return to read it
when the practice is mastered.

In short, the model used by Falcon functional programming is called Sigma to Alpha. The
functional evaluation is the process to apply the Sigma-to-Alpha function to a list of zero or more
items, each of which is called "topic". A topic may be either an Alpha, in which case Sigma-to-
Alpha applied to that topic gives the same Alpha, or a Sigma, in which case it is Sigma-evaluated to
obtain a result topic. The result may be an Alpha or again a Sigma, in which case Sigma-to-Alpha
may be applied again until an Alpha result is reached. A list of topics is an Alpha if and only if each
elements is an Alpha; this implies that topics containing a list of topics have Sigma-to-alpha applied
to each one of their elements.

Sigmas are sequences composed of an application Kappa followed by zero or more topics. Sigma-
evaluation of a Sigma is applying K to its argument (the list of topics), each of which being Sigma-

http://kib2.free.fr/Falcon/sg/Functional%20programming.html

Falcon Survival Guide 46/130

to-alpha processed before K -application.

Applying the Sigma-to-alpha function to a sequence of topics is called Sigma-evaluation, and
applying a K to its topics is called K-reduction.

Let's discuss this topic in a bit less cryptic language. In functional context, we want to determine the
final value of a sequence of data, which may contain functions or terminal data. "Determining" this
value may be interesting both for the value itself or for the process that is performed to achieve the
value, as this may involve calling functions. However, let's focus on determining the value. We have
an item that must be evaluated in functional context (a topic), or sigma-evaluated . It may be itself
an atom, or a list of atoms not needing simplification. Those two entities are indicated with the term
"alpha", initial letter of "atom" in the Greek Alphabet.

In a sequence, the sigma-evaluation is applied to each element to determine if it can be reduced,
while if the topic was not a list in the first instance, the value is already known and corresponds to
the value itself.

If the first element of a sequence to be sigma-evaluated is a Falcon callable item (Kappa for Greek
initial of "callable"), then the sequence must be simplified (hence the name "Sigma" from the Greek
letter "S"). In that case, the other topics in the sequence are themselves Sigma-evaluated, and when
they are all reduced, the list of topics is passed to the K callable symbol. The return value is
substituted with the previous Sigma in the sequence where it was found.

The return value of a K-reduction needs not to be an alpha. It may be still a Sigma, in which case
the topic may be evaluated again, if needed and wished.

A special class of K applications is called Eta (extra-Kappa). The K reduction of Etas modifies the
way Sigma-evaluation is performed. Actually, when a Sigma-evaluation finds a Sigma whose K is
an Eta, it doesn't sigma-evaluate the other topics in the list, and passes them unchanged to the Eta
for K-reduction. Then, it's the Eta that, if needed, starts a subsequent Sigma-evaluation on its
parameters, or on just some of its parameters. This is called Eta-reduction, and form the basis of the
implementation of functional "constructs" in Falcon.

Actually the concept of Sigma currently overlaps 1:1 with the callable arrays, as the arrays are the
only sequence known as Sigma at this stage of development, but we'll keep the term "sequence"
through, as the model shall be extended to various kind of sequences. Evaluating in functional context
Falcon, by default, is not in functional mode. Functional evaluation, or Sigma-evaluation, is
invoked by using special functions that instruct the VM to begin to consider items in Sigma-
evaluation mode. Those special functions are called "ETA" (from the Greek letter "eta"), and have a
special significance for Falcon functional model. When the Sigma-evaluation meets an Eta function,
the VM drops sigma mode and lets the Eta function handle the situation. Then, the Eta usually
instructs the VM on further sigma-evaluation needed.

The most simple eta function is the eval, which sigma-evaluates its contents and returns the
evaluation result.
> eval (1)

Not surprisingly, this results in 1; in fact, 1 is an atomic value, whose sigma-evaluation value is
exactly itself. Sigma-evaluation recognizes special values only to certain sequences, and
specifically to callable arrays.

Falcon Survival Guide 47/130

Sigma-evaluation on normal arrays results in sigma-evaluation of each element:
inspect(eval([1,2,3]))

will result in [1,2,3]; however, consider the following case (we'll be using dot-square notation for
arrays from now on):
function returnTwo()
 return 2
end

inspect(eval(.[1 .[returnTwo] 3]))

As the sigma-value of an array is the sigma-evaluation of each element, the [returnTwo] array
gets evaluated. It's not a simple array; the evaluator finds out that its first (and only) element is a
callable item, and to reduce it to a plain value the function gets called. The return value is
substituted in place of the function that was called, so the final evaluation results in [1,2,3].

A callable item as first element of an array is called Kappa, and calling the Kappa with its
parameters is called K-reduction.

When the K is not an Eta function, that is, if it's a plain function that has no special meaning in
functional evaluations, all its parameters get sigma-evaluated before it is called. For example :
function sum(a, b)
 return a+b
end

inspect(eval(.[
 .[sum .[sum 2 2] 4]
 .[sum 3 .[sum 3 3]]
]))

In this case, the inner sums are K-reduced and then they are passed to the outer sum for K-
reduction. The result of this evaluation is an array [8, 9].

Another common Eta function is iff (functional if). This function Sigma-evaluates the first
parameter. If the result is true, according to Falcon truth test, then the second parameter is Sigma-
evaluated and the result of the evaluation is returned. If it's false, an optional third parameter will be
Sigma-evaluated and returned.

For example :
function greater(a, b): return a > b

printl(iff (
 .[greater .[random] 0.5],
 "you were lucky",
 "you were unlucky"))

Falcon evaluates as true non-zero numeric values, non empty strings, arrays and
dictionaries and any object. Zero, nil empty strings, arrays and dictionaries are
considered false.

Notice two important aspects of the Falcon functional model. First, it is an impure model, meaning
that K-reduction may have "side effects". In other words, they may alter the state of the program (as
in creating items), and they can have input or outputs. Second, normal expression evaluation is also
available in functional context; it is not strictly necessary that every parameter of an Eta-function
gets evaluated through Sigma-evaluation; it's just an option at the programmer's disposal.

Falcon Survival Guide 48/130

Given these two features, the above code can be rewritten as:
iff (random() > 0.5,
 .[printl "you were lucky"],
 .[printl "you were unlucky"])

Expression evaluation is performed before Sigma-evaluation, and is performed on every parameter
of any function, regardless of their being Eta-functions or not; this means that it is possible to
prepare simple values using imperative programming, and use them in a later functional context, as
the above example has shown. However, be careful not to confuse imperative evaluation with K-
reduction. Rewriting the above code as follows:
iff (random() > 0.5,
 printl("you were lucky"),
 printl("you were unlucky"))

both the printl calls would be performed, and then the Sigma-evaluation of one of their return
values would end up being returned by iff. It is unlikely that this is the desired effect.

At times, the caller is interested in having a Sigma expression returned for later evaluation rather
than evaluated on the spot. The lit Eta-function just passes down its parameters, interrupting the
Sigma-evaluation. For example, take the following code:
picked = iff (random() > 0.5,
 .[lit .[printl "you were lucky"]],
 .[lit .[printl "you were unlucky"]])
...
picked()

This behavior is actually replicated by the Eta-function choice, which works like iff, but doesn't
Sigma-evaluate the second and third parameter, returning one of them unevaluated. For example:
choice(random() > 0.5,
 .[printl "you were lucky"],
 .[printl "you were unlucky"])() // notice the () call operator.

Evaluation operator
Since version 0.8.12, Falcon also provides an eval operator, formed by a cap-star sequence, which
performs functional evaluations on sequences. It's an unary operator returning the item as-is if it's
not callable, calling it if it's a function or evaluating it if it's a sequence:
> ^* 1 // 1

function test()
 > "Test"
 return 2
end

^* test // calls test()
inspect(^* .[1 .[test] 3]) // evaluates 1,...,3 sequence

This operator can be used only to initiate functional sequences, but it is more efficient than calling
the eval function. It is also meant to retrieve values that may be either values or functions that return
a value in an efficient way:
// Instead of this...

// Should I get a value or call a property giving me the value?
if obj.prop.type() == FunctionType
 value = obj.prop()
else

Falcon Survival Guide 49/130

 value = obj.prop
end

// ...you can just do
value = ^* obj.prop

Multiple evaluation
The Eta-functions all and any take a sequence of items as parameters. The all Eta-function
returns true if the results of all the items in the sequence are true, while any returns true if anyone
of the items is true. Each item is Sigma-evaluated separately; so the net effect of all and any in
functional context is that to perform Sigma-evaluations on a sequence of items respectively while
and until an evaluation result is true.

Consider this example:
function falsifier(): return false
function verifier(): return true

any(.[
 .[falsifier .[printl "First call..."]]
 .[verifier .[printl "Second call..."]]
 .[falsifier .[printl "Third arg..."]]
])

As falsifier is not an Eta-function, its arguments are sigma-evaluated, with the effect to print the
desired string; then the falsifier is called (with a value that is ignored), and being false it forces the
evaluation of the next statement. The verifier returns true; once Sigma-evaluated its parameters, the
function interrupts evaluation, and the third element is not K-reduced.

There are also two Eta-functions named allp and anyp , which work respectively as all and
any , but they doesn't take a sequence as unique parameter; instead, they repeat Sigma-evaluation
directly on each of their parameter respectively while and until an item evaluates to false. They are
provided to avoid redundant array declarations, especially when all and any are themselves part of
Sigmas:
iff (reverseCalc,
 .[any .[third second first]],
 .[anyp first second third]) // notice anyp vs. any

These four little functions can be also used to shorten long and if and/or sequences. For example ,
an if statement like the following:
if cond1 and cond2 and cond3 and cond4
 ...

may be even more readable if written as
if allp(cond1, cond2, cond3, cond4)
 ...

and even long sequences of logical operators may be changed into all/any sequences:
if (condition(1) and condition(2) and (c1 or condition(3))) or \
 (c2 and condition(4))
...
end

// same, but using anyp/allp
if anyp (.[allp .[condition 1] .[condition 2] .[anyp c1 .[condition 3]]],
 .[allp c2 .[condition 4]])

Falcon Survival Guide 50/130

...
end

Cascading
The Eta-function cascade evaluates a sequence of K-applications one after another, where the
result of the first evaluation is feed as parameter of the second one and so on. In other words,
cascade executes a predefined list of functions one after another, passing the result of the former
as the parameter of the latter. The first K-application in the list receives all the parameters given to
cascade, and the return result of the last K-application is finally returned by cascade. As an
example, it's possible to use the classical mathematical definition of absolute value as the square
root of the square of a number.
function square(x): return x * x
function sqrt(x): return x**0.5
> cascade(.[square sqrt], 5) // prints 5
> cascade(.[square sqrt], -5) // prints 5 (again)

Cascade becomes useful when used create new functions by simply concatenating existing ones.
For example , to create a "classical abs" function that works as the above example, the following
code can be used:
cascade_abs = [cascade, [{ x => x*x}, {x => x ** 0.5}]]
> cascade_abs(5) // prints 5
> cascade_abs(-5) // prints 5 (again)

The items in the sequence of K-applications need not to be just K, they can be complete Sigma (that
is, i.e. callable arrays), so it's possible to pre-cache parameters that will be passed to functions in the
sequence before the value coming from previous evaluation. For example , the following sequence
calculates the percent ratio between two numbers.
function factorize(factor, x): return x * factor
function proportion(whole, part): return part / whole
percent = .[cascade .[proportion .[factorize 100]]]

// if the whole is 2, and the part 1, what % is it?
> percent(2, 1), "%" // 50%

The factorize K has been given 100 as the first parameter; the second will be the one received
as result of the proportion function.

Being faithful to the impure character of Falcon functional programming model, cascade accepts
functions having a pure side-effect, that is, accepting the value or values given as parameters, but
refusing to produce a result. If a function returns an out-of-band item, then it is considered as if not
called, and the same parameter (or parameters) that were given to it by cascade are given to the
next one. In the following example, we inspect results as they are being formed:
function factorize(factor, x): return x * factor
function proportion(whole, part): return part / whole

function inspector(phase)
 >> phase, ": "
 for id in [1:paramCount()]
 >> parameter(id)
 formiddle: >>", "
 forlast : > "."
 end
 // returns an out-of-band item
 return oob(nil)
end

Falcon Survival Guide 51/130

percent = .[cascade .[
 .[inspector "Begin"]
 proportion
 .[inspector "After proportion"]
 .[factorize 100]
 .[inspector "After factorize"]]
]

> percent(2, 1), "%"

The oob() function turns any item into an out-of-band item; the out-of-band characteristic of an
item is a marker, a signal that the upstream function wants special (namely out-of-band) processing
for the item being returned. Scripts can use the out of band feature too. We'll talk more specifically
of out-of-band items in a later paragraph.

When a function in the sequence returns an out-of-band item, it instructs cascade not to use its
return value, and to pass the same parameters it has received to the next function.

List evaluation
Some functional programming oriented functions (some of them being Eta-functions, other being
normal functions) operate repeatedly on a list of elements. They are: the normal functions map ,
filter and reduce and the Eta-Functions dolist and xmap .

The map function transforms a list into another through a so called "mapping function"; it returns a
sequence where each item is the return value of the mapping function applied to the original item.
For example , to obtain the square of three numbers using map, it is possible to do:
s1, s2, s3 = map({ x => x * x }, [1, 2, 3])

The variables s1 , s2 and s3 will respectively contain 1, 4 and 9.

The filter function stores the original items passed in an array in the result sequence if a
"filtering" function applied to them returns true. For example , to filter a list so that only even
numbers are left in, the following code can be used:
function passPair(x)
 return x % 2 == 0
end

vals = filter(passPair, .[1 2 3 4 5 6])
inspect(vals)

The vals array holds now the values 2, 4 and 6.

The functions filter and map can be combined to filter an array and change its value, but map
may be also used to filter the mapped sequence: if the mapping function returns an out-of-band
item, the value is skipped. The example can be rewritten as:
function mapPair(x)
 if x % 2 != 0: return oob(nil)
 return x
end

vals = map(mapPair, .[1 2 3 4 5 6])
inspect(vals)

The reduce function applies a sequence of values to a reducing function one at a time; it also
passes the previous return value of the reducing function to the next call as the first parameter. An

Falcon Survival Guide 52/130

extra initialization value can be optionally given; if present, that initialization value will be used as
the first parameter in the first loop, else in the first loop the reducing function will be called with the
first two elements in the array.

The final return value of the reduce function is the last return value of the reducing function.

For example , the reduce function may be used to sum all the numbers in an array:
function sum(x, y): return x + y
> reduce(sum, // the function
 [1, 8, 4, 9 , 3, 2], // the array to be reduced
 0 // the initial sum value
)

Using reduce in a bit of a smart way, it is possible to do interesting things such as calculating the
mean value of a sequence:
function partialMean(x, y)
 static: count = 0

 // use an oob value to control start...
 if isoob(x)
 count = 0
 return y
 end

 // ... and to control the end
 if isoob(y): return x / count

 // normally, count and sum
 count++
 return x + y
end

function mean(sequence)
 return reduce(partialMean, sequence + oob(nil), oob(nil))
end

> mean([1,2,3,4,5,6,7,8,9,10])

The xmap Eta-Function works as map , feeding a list of items as parameters of a given function
one at time and building an array of results, but it has a relevant difference: it is an Eta-Function, so
it takes care to Sigma-reduce its parameters by itself. Each item of the list to be mapped is Sigma-
reduced before being fed to the mapper, and if the mapper is not a simple function, but a sigma, it is
Sigma-reduced too before being used.

In other words, it is possible to map function results, and provide a variable mapper (the result of
the sigma function). If one of the items in the list, or the evaluator itself, is not to be evaluated, it
can be passed to xmap through the lit Eta-Function.

Finally, the dolist Eta-Function works similarly to xmap , feeding a Sigma-reduced item from a
sequence in as parameter of a given function, but it doesn't create a result map. The dolist
function is useful when it's necessary to process the list or to generate some non-functional effect in
the processing function, avoiding paying extra unneeded memory. For example , the following
example creates a even number counter:
function countPairValsIn(sequence)
 // local function cp
 cp = function (x)
 static : count = 0

 if isoob(x)
 val = count
 count = 0
 return val

Falcon Survival Guide 53/130

 end

 if x%2 == 0: count++
 return true
 end

 dolist (cp, sequence)
 return cp(oob(nil))
end

> countPairValsIn([1, 2, 3, 4]) // will print 2Late bindings
So far we have been using external item references to provide functional evaluations with symbols
that may be changed. Although effective, this technique precludes the possibility of creating a single
execution unit consisting only of functional code. Also, sharing code across coroutines (logically
parallel program execution units) could be tricky.

Falcon proves an item type called "late binding" which is specifically designed to be bound to a
value only during array-calls and functional evaluation. Late bindings can be generated at any time
through the & operator and the lbind function.

For example :
counter = lbind('counter')
> counter

Late bindings become interesting when merged with arrays. Arrays can be assigned local variables
through the '.' operator; then, a late binding can be applied to retrieve that value and pass it to the
function during the call or the evaluation.

For example :
calling = .[printl &value]
calling.value = "Hello world"
calling() // execute directly
eval(calling) // evaluate in functional context

So, the value local symbol will be bound only at call, and it may be changed between calls, or
changed directly in between. For example :
function inc(x): x+=1

calling = [] // our execution canvas
calling.value = 10 // initializing
calling += .[.[inc &value]] // adding an increment call
calling += .[.[inc &value]] // and another one
eval(calling)
> "After increment: ", calling.value

The binding context is always the outermost sequence in a computation. Notice that the calling
array in the above example includes two sub-arrays, both calling inc , but the &value late
binding refers to calling and not to them.

As late bindings are items, they can be stored and applied separately.

For example :
calling = .[printl]
calling.even = "Even number: "
calling.odd = "Odd number: "

Falcon Survival Guide 54/130

for i in [0:4]
 valsym = i % 2 == 0 ? &even : &odd
 (calling + valsym)(i)
end

In the above example, a callable array is first created, and two symbol values are stored into as
even and odd . Then, one late binding, either even or odd , is set in valsym and a new array
composed from the original and the applied late binding is created and called at each time. The
result is:
Even number: 0
Odd number: 1
Even number: 2
Odd number: 3

Self-referencing local values.
Late bindings can have any value, including functions or callable sequences. For example :
sequence = .[&multiplier 3]
sequence.multiplier = .[{x => x * 3}]
> eval(sequence)

Notice that when calling directly sequence in the above example is not possible as &multipler isn't
bound to a callable item (the code block) until the evaluation context is started or the execution is
performed.

Considering the fact that local values can store arbitrary functions, and that they can be used
separately from the evaluation of the sequence, sequences can also be used to produce flexible
object-oriented like functional operations. The special binding value &self resolves into the
sequence leading the evaluation context, and can be used to reference the "calling sequence".

For example, it is possible to use part of the current functional sequence as a value:
load funcext // for the "at" function

vector = .[.[printl .[at &self 1]] 100] // print [1] of this sequence
eval(vector) // 100
vector[1] = "New value"
eval(vector) // "New Value"

Of course, &self1 wouldn't work as &self gets bound only during an evaluation, while using []
on it would try to access the current value of self.

Finally, the self keyword (notice the lack of '&') can be used to access the host sequence when
calling methods created as functions bound in the sequence. The following example prints each
item in vector.
vector = .['a' 'b' 'c' 'd']
vector.display = {=>dolist(.[printl "Item... "], self) }
vector.display()

In short: &self resolves in the currently being evaluated sequence (during evaluations), while
self accesses the owning sequence in bound methods during calls.

Parametric evaluation
At times it becomes useful to modify the evaluated sequences through different executions. It is

http://kib2.free.fr/Falcon/sg/Functional%20programming.html

Falcon Survival Guide 55/130

generically possible to insert variable references in the sequences and modify their values, or to
modify directly the sequences (by changing their contents, as they are arrays and can be modified),
but the simplest way is to use late bindings, which allow to modify the atoms stored in a sequence
as the evaluator reaches them.

One special kind of late bindings are the parametric bindings. They refer to parameters given to the
evaluated sequence by the most internal eval call (or generically, a functional parametric
evaluator), and are formed by the & symbol and the number of the parameter (1 based). So
eval(.[printl ">" &1 "<"], "The thing to be printed")

Parametric evaluation comes very handy when building flexible functions on the fly:
looper = { limit, seq =>
 for n = 1 to limit
 eval(seq, n, limit)
 end }

looper(5, .[printl "loop " &1 " out of " &2])

Functional loop
It is even possible to create loops using functional constructs. The floop (functional loop) Eta-
Function takes a sequence given as parameter, and iterates forever calling each callable item in the
list one after another. When the last callable item is processed, the first one is executed again. For
example , the following loop prints forever "one, two, three".
floop(.[
 .[print "first, "]
 .[print "second, "]
 .[printl "third."]
])

You can interrupt this endless loop by pressing CTRL+C. There are times when endless loops are
needed, but usually, it is useful to provide a condition for the loop to terminate. If a function in the
sequence returns an out-of-band 0, the loop is interrupted, and if it returns an out of band 1 the loop
is restarted. In other words, out-of-band zero works as functional break, while out-of-band 1 is
interpreted as functional continue.

The following example prints the numbers from 1 to 10.
i=0
.[floop .[
 .[inc $i]
 .[printl $i]
 .[iff .[ge $i 10] oob(0)]
]]()

function inc(x): x = x + 1
function ge(x, y): return x >= y

First, an "i" variable is created with an initial value; then, the floop function is called iterating
over a list of three Sigmas: the first increments its parameter, and gets called with a reference to "i",
the second prints the variable and the third checks its value; if it's greater or equal than 10, an out-
of-band 0 is returned, breaking the loop.

Notice that the "i" loop variable is always used by reference in the list. The list gets first created and
then evaluated; when the variables inside the list may change during evaluation, it is necessary to
use a reference to them, as the list gets created only once and then evaluated. Variables not passed

Falcon Survival Guide 56/130

by reference are evaluated at list creation, or in other words, the evaluation access them by value
using the value they had at list creation.

The same loop may be rewritten using code blocks instead of fully declared functions as follows:
i=0
.[floop .[
 .[{ x=> x=x+1 } $i]
 .[printl $i]
 .[iff .[{x => x>=10} $i] oob(0)]
]]()

More functional loop
Another function performing functional loops is times . The times function is extremely
flexible: it can perform ranged loops (as for/in) and it can either execute repeatedly functions or
evaluate repeatedly sequences. It passes the current value of the loop variable as the first parameter
of functions, or as the &1 parametric evaluation parameter if receivs a sequence. As in floop,
oob(0) and oob(1) have special meanings, causing the loop to be respectively broken or restarted.

For example:
// Times used with functions
times(5, { x => printl("As a function: ", x)})

// Times used with sequences
.[times ,[2:11] .[// Notice the ',' to tell the range
 .[iff .[{ x=> x % 2 == 1} &1] oob(1)] // skipping impairs
 .[printl 'Counting even... ' &1]
]]()

The times function can be applied also to integers (will loop from 0 to the number excluded). It
also provided as a method of both ranges and integers; so the above can be rewritten as:
// using the step variable
[2:11:2].times(.[printl 'Counting even... ' &1])

Integers have also downto and upto methods, working similarly:
5.upto(10, { n => printl("Loop up: ", n)})
10.downto(5, .[printl "Loop down: " &1])Out of banding in detail
It is often useful to give items a "special meaning", so that when they travel in functional sequence
evaluations, or as we'll see, when they travel along in messages, or just when they are to be returned
by functions in your scripts.

Every Falcon item can be associated with a out of band status flag which can be given, removed or
queried through a set of three functions and four operators.

Operators are faster and possibly more compact and readable than functions, but functions are
useful in functional sequences where the value of the item on which to perform the out of banding
isn't ready or known from the beginning.

The operations on out-of-band items (oob) are the following:

• Assigning the out-of-band status: ^+ operator or oob function.
• Removing the oob status: ^- operator or deoob function.

Falcon Survival Guide 57/130

• Checking the oob status (evaluates to true if oob is given to the item): ^? operator or
isoob function.

• Reversing oob status (removing it if given, giving it if ungiven): ^! operator.

The following example show a script-level usage of out of band items through operators.
function getNum()
 num = random(1,10)
 if num > 4: return ^+ num
 return num
end

for i = 1 to 10
 > "At round ", i, " the number is ", \
 ^? getNum() ? "less." : "greater."
end

In this example, the function getNum() also performs a check on the random number, and if it's
greater than 4, it marks it as out of band via the ^+ operator. The calling program can check the
outcome of this test via the ^? operator, and print a different string depending on what happened.
This example is trivial, but in case the check is complex or if the remote code is the only part of the
program that could easily perform the check (i.e. because the information needed to decide the
status of an item are transient and destroyed soon after), then this technique comes extremely
useful.

There are cases in which a function return, or a generic processing result, may legally be any Falcon
item, including, for example, nil. In those cases, having an extra flag on the returned item if it is to
be considered valid, of if the process evaluation was faulty or couldn't be completed correctly can
be extremely handy and can obviate the need of setting validity flags elsewhere (in a by-ref
parameter, in properties or in global variables).

While it is sometimes more appropriate to raise errors in those cases, in other cases the raise
semantic may not be the correct solution to handle the caller the notion of an impossible evaluation.
This is the case with functional sequences and message programming, where the caller may not be
prepared to deal with exceptions coming from the processor code, but at times it also becomes
useful in procedural and object oriented programming. In fact, a raised exception has the semantic
value of signaling a problem, while an "empty result" or "result to be specially considered" may not
necessarily be due to a fault in the processing algorithm or in the input data. It may just be one of
the possible and legal outcomes of the processing.

Out of banding and procedural programming
Out of band construct comes also extremely handy in procedural programming. For example,
functions with static data may reset or change their state through out-of-band paramters.

Suppose we want to create a generator, returning an item from an array. We can replenish the
generator by sending it a new array, as in the following example:
function generator(data)
 static
 array = nil; pos = 0
 end

 if data
 array = data
 pos = 0
 return
 end

 if pos >= array.len(): return nil

Falcon Survival Guide 58/130

 return array[pos++]
end

generator([1,2,3])
> generator() // 1
> generator() // 2
> generator() // 3
> generator() // nil...

Now, the generator may be a bit smarter, and allow to reset the internal counter if it receives an out
of band integer number; let's change if data with...
 if isoob(data)
 pos = data
 elif data
 array = data
 pos = 0
 end

This new function can be invoked as follows:
generator([1,2,3])
> generator() // 1
> generator() // 2

generator(oob(0)) // reset
> generator() // 1
> generator() // 2

The for/in loop understands generators; it respects formiddle and forlast blocks by caching in
advance the results of generator calls, and terminates the loop when an oob(0) value is returned.
For example, changing the return nil into return oob(0) in the above generator, it's
possible to feed the function in a complete for/in loop:
function generator(data)
 static
 array = nil; pos = 0
 end

 if data
 array = data
 pos = 0
 return
 end

 if pos >= array.len(): return oob(0)
 return array[pos++]
end

generator([1,2,3])
for elem in generator
 forfirst: >> "Begin: "
 >> elem
 formiddle: >> ", "
 forlast: > "."
end

This will print "Begin: 1, 2, 3."

Generators could be created also with closures, methods, callable arrays, or in general with any
callable Falcon item returning an oob(0) element to terminate the loop.

Falcon Survival Guide 59/130Objects and classes
Falcon provides a powerful object model that includes multiple inheritance, caller object tracking
(sender) one bit attributes setting and non-classed objects. Here, we'll discuss how Falcon objects
and classes can be used.

Shortly we'll introduce Falcon objects before speaking about the more general cases of
the classes. Objects are actually class instances whose class remains hidden in the
virtual machine and is not accessible at script level. Falcon stand-alone objects

An object is an entity that possesses a series of properties. A property may be seen as a "variable"
that belongs exclusively to a certain object. Some of these properties hold a function that is made to
operate on the objects they belong to; these special functions are called methods. For example, an
object modeling a cash box will have a property that records the current amount of money being
held in it and a method to deposit and withdraw cash. So, supposing we have already our cashbox
ready to be used, we may do natural operations on it like this:
cashbox.amount = 50 // initial amount

/* some code here */
object.deposit(10)

/* some code here */
object.withdraw(20)

/* some code here */
printl("Currently, the cashbox holds ", object.amount, " Euros.")

The "." (dot) operator is also called the "object access operator", and is used to access a property or
a method that is inside an object. Properties can written and read without any particular limitation;
in some contexts, however, you'll prefer to have a method that knows how to handle the objects
internally. For example, we can code a withdraw method that raises a warning if it finds the amount
property has fallen below 0.

A sort of protected scope is provided when declaring properties starting with an
underline _.

The simple cashbox object may be declared as follows:
object cashbox
 amount = 0

 function deposit(qt)
 self.amount += qt
 end

 function withdraw(qt)
 self.amount -= qt
 end
end

Our object has a quantity of money (initially set to 0), and two methods: deposit and withdraw. In
the object statement, every property is simply declared by assigning a constant (initial) value to
it; the object declaration supports only the assignment from constant statement, other than the

Falcon Survival Guide 60/130

method declarations. Methods are nothing more than the functions we have just seen; as the
object statement body does not support function calls, the declaration keyword function is not
necessary to state that a method is being declared; the name of the method followed by parenthesis,
optionally including a parameter list, is enough to define it.

The cashbox example includes a new keyword: self. This keyword refers to the object that is
currently handled by the method. It is necessary for every method to use the self object to access
object properties: look at this example:
object cashbox
 amount = 0

 function deposit (qt, interest_rate)
 amount = qt * interest_rate
 self.amount += amount
 end

 /* other things */
end

As this example explains, methods may need local variables too, and they are simply defined by
assigning some value to them. So, to distinguish between the "amount" local variable and the
"amount" object property, the self object alias must be used.

Here follows a more formal definition of the object statement:
object object_name [from class1, class2 ... classN]
 property_1 = expression
 property_2 = expression
 ...
 property_N = expression

 [init block]

 function method_1([parameter_list])
 [method_body]
 end
 ...
 function method_N([parameter_list])
 [method_body]
 end
end

The method declarations may be shortened with the colon sign (":") if they hold only one statement,
exactly as the function declaration.

We'll see later on that the class statement has a much more flexible way to define object entities,
but the object statement is meant to provide a fast but clean way to define simple objects that are
unique in their instances.

Once an object is defined, it is not possible to add new properties or new methods. Anyhow, it is
possible to change its methods and properties at will; look at this example:
function new_deposit(qt)
 if self.amount + qt > 5000
 printl("Sorry, you are too rich to be a programmer")
 else
 printl("Ok, we authorize you to have that money")
 self.amount += qt
 end
end
old_deposit = cashbox.deposit
cashbox.deposit = new_deposit
cashbox.deposit(10000) // we are now forbidden to do that.

old_deposit(10000) // but the old method still works

Falcon Survival Guide 61/130

printl(cashbox.amount) // will be initial amount + 10000

Function names can be seen as items, and assigned to a property (or to any variable in general); it
does not matter if that property was originally a method or not. In fact, we may have even assigned
a function to cashbox.amount, but in this context it would not make much sense. Also, it is
possible to store a method from an object in a variable; the variable also records the object from
which the method was from, and when used to call the old method it will feed the old object in
self. Finally, as you can see, functions also may access the self object; it is possible that they
are assigned to an object method, and in that case, the self item will assume the value of the
original object.

If a function call is not performed via a method, that is, if it's a function that is just called as we
have done before this paragraph, the self item will assume nil value. So, it is possible for a
function to know if it's being called as a method or not:
/* Data definitions */

function maybe_method()
 if self = nil
 printl("I am a function")
 else
 printl("I am a method")
 end
end

object test
 property = 0
end

/* Main program */

maybe_method() // prints "I am a function"
test.property = maybe_method
test.property() // prints "I am a method"
maybe_method() // prints "I am a function" again

We are going to see how to further configure the actions of possibly methods or object users in the
next paragraph. The "provides" and "in" operators for objects
As object structures may be configured independently from predefined formal definitions (also
known as classes), it is necessary to provide a way to have some information about object internals
at runtime, so that generic object users have a minimal ability to configure themselves depending on
object structure. In advanced object oriented languages, it is generally possible to know which type
of object is currently being handled; in Falcon, although this information is present, it may not be
enough to manipulate objects. Some of them, in fact, are just "objects", to which any property may
be attached.

The provides keyword is a relational operator that assumes the value of 1 (true) if a certain
object (first operand) provides a certain property (second operand). Let's redefine the
new_deposit function/method to act a little smarter. Provides never raises an error; it will just be
false when the first operand is not an object:
function new_deposit(qt)
 if not self provides amount
 printl("This should have been a method of an object with an amount")
 return
 end

Falcon Survival Guide 62/130

 if self.amount + qt > 5000
 printl("Sorry, you are too rich to be a programmer")
 else
 printl("Ok, we authorize you to have that money")
 self.amount += qt
 end
end

Now, if you try to call this function directly from the program, like this:
new_deposit(1000)

the function will refuse to access the self object, which in fact does not exist.

We have already seen the in operator in action: it's the relational operator that scans an item for
some contents: substrings in strings, items in arrays and keys in dictionaries. The in operator is so
flexible that it can also be applied to objects and properties.

While the provides operator is specifically meant for objects, and is able to understand that its
second operand should be a property, in is more generic and doesn't have this ability. As a side
effect, in is slower than provides, but it is more flexible. The in operator will check for a string
to be the same as a property name in the second operand, if it is an object; the function we have just
seen may be also be written as:
function new_deposit(qt)
 if not "amount" in self
 printl("This should have been a method of an object with an amount")
 return
 end
 /* the rest as before */
end

One first thing to note is that in would also work if the second operand were a string, an array or a
dictionary, in which "amount" may be found. So, except for the special case of self which may
only be an object or nil, it is necessary to check for the second operand to be an object (or to be sure
of that) before trying to use in. The other thing to be noted is that, as in does not takes the value of
the first operand as a literal, the value to be checked may be also set in a variable:
function new_deposit(qt)
 if some_condition
 property = "amount"
 else
 property = "interest"
 end

 if not property in self

 end
...
end The init block
As you have probably noticed, the [init block] that has been introduced in the formal
object declaration has not yet been explained. Objects can have an initialization sequence;
however the explanation about how to use the init block in objects must be postponed, as it is
first necessary to introduce the classes.

Falcon Survival Guide 63/130Classes
Defining an standalone object can be useful when there is specifically the need of one exact single
object doing a very particular task; they are useful when the modeled object is so different from the
other ones that it have very little in common with them (or nothing at all). However, in real world
programs, this is a very rare case. Most of the time, there will be many points in common among
different objects; it's natural for the human mind to categorize the reality so that every item of its
attention is framed into a class. A class is then a schema, a basic description of the characteristics
(properties) and behavior (methods) of a possibly infinite set of objects that may be represented or
nearly approximated with this schema. The objects having those characteristics are called
"instances", and the process to create an object from a class is called "instantiation".

Falcon classes are a mix of data (which is mainly extracted by the compiler at compile time
implicitly) and code that can be used to instantiate objects. Classes are defined this way:
class class_name[(param_list)] [from inh1[, inh2, ..., inhN]]
 [static block]
 [properties declaration]
 [init block]
 [method list]
end

The property list of a class contains the name of the class properties and their initial values. Any
valid expression can be assigned to the properties. If there isn't a meaningful value for an expression
at initialization time, just use the nil value. Actually, the virtual machine and the compiler will
work jointly to minimize the required initialization time, so that properties being given nil are not
really assigned a value in the virtual machine loops during object creation, sparing time.
class mailbox(max_msg, is_public)
 capacity = max_msg
 name = is_public ? "" : "none";
 messages = []
 a_property = nil
end

The instantiation process can be performed in two ways. One is that of calling the class as it were a
function; the effect will be that of create an empty object that will be fed in the class constructor,
like this:
my_box = mailbox(10, false)
printl("My box has ",
 my_box.capacity, "/",
 len(my_box.messages),
 " slots left.")

The other way is that to use the object semantic to expand a base class or initialize normally
uninitialized members:
object my_box from mailbox(10, false)
 name = "Giancarlo"
end

As classes are considered generically "callable items", it is possible to manipulate them more or less
like if they were functions. For example :
if some_condition
 right_class = mailbox
else
 right_class = X_mailbox
end

Falcon Survival Guide 64/130

/* some code here */

my_box = right_class(10, false)
printl("My box has ",
 my_box.capacity # len(my_box.messages),
 " slots left.")

To define a method in a class, the function keyword must be used:
class mailbox(max_msg)

 capacity = max_msg * 10
 name = nil
 messages = []

 function slot_left()
 return self.capacity - len(self.messages)
 end
end

At times, the initialization of an object requires a little more than just assigning some expressions to
properties. In the cases, there are two options. One is to write a method that will be called separately
to complete the initialization of the object once it is already created. Although this is a clean way to
do the job, this may be painful when creating singleton objects. The other method is to use the
explicit initializer, also known as explicit constructor, the init block.

The explicit initializer works as a method, with the exception that it is called during object
initialization, right after property assignments; it receives the parameters that are declared in the
class statements, so it cannot be given any other parameter declaration. This is an example:
class mailbox(max_msg)

 capacity = max_msg * 10
 name = nil
 messages = []

 init
 printl("Box now ready for ", self.capacity, " messages.")
 end

 function slot_left()
 return self.max_msg - len(self.messages)
 end

end

Properties can be declared static. By declaring a static property, it becomes shared among all the
instances of a class. As the property is shared among many objects, it should not be initialized with
dynamic data. The property will be initialized exactly the first time an object of that class is created;
any update to the property will take effect both into all existing objects of the same class and into
the new instances that are created afterwards.
class with_static
 static element = "Initial value"

 function getElement(): return self.element;
 function setElement(e): self.element = e;
end

obj_a = with_static()
obj_b = with_static()
printl("The initial value of the property was: ", obj_a.getElement());
obj_a.setElement("value from A")
obj_c = with_static()
printl("The value in B is: ", obj_b.getElement(), " and in C: "
 , obj_c.getElement());

Falcon Survival Guide 65/130

The init block can have a static block that works very like function static blocks. However,
the init static block is only called the first time an object of a certain class is instantiated. This
allows preparing setup of an environment that will be then used by objects of the same class.
class with_static_init
 static numerator = nil
 my_number = nil

 init
 static
 self.numerator = 1
 printl("Class initialized")
 end
 self.my_number = self.numerator++
 end
end

obj_a = with_static_init()
obj_b = with_static_init()
obj_c = with_static_init()
printl("Object number sequence: ", obj_a.my_number, " ",
 obj_b.my_number, " ", obj_c.my_number)

The output will be:
Class initialized
Object number sequence: 1 2 3 Methods with static blocks
Static blocks can be declared in methods as they can be declared in normal functions; however, their
behavior can be a bit counterintuitive. A method with a static block will enter and perform it only
the first time the method is called for every instance of the parent class. Similarly, variables
declared in the static block of a method are actually class static, and they are modified by all the
instances of a certain class.

If there is the need to execute a part of a method only the first time that method is executed for a
certain object, use a property, or even better, an attribute (see page74) and check its value with a
normal branch.Classwide methods
It's also possible to access a method from inside a class. Instance-less methods, or classwide
methods, can be called directly from the class names, but, as they do not refer to any instance, they
cannot access the self object.

Declaring and accessing methods directly from classes can be a simple way to define a namespace
where to access normal functions. For example :
class FunnyFunctions
 function a()
 > "This is funny function a"
 end

 function b()
 > "This is funny function b"
 end
end

FunnyFunctions.a()
FunnyFunctions.b()

Falcon Survival Guide 66/130

Classwide functions can be seamlessly merged with normal instance-sensible functions; the only
requirement for a function to be callable not just from an instance, but also from the class, is that id
doesn't access the self item.Property accessors
Since 0.9.4.4
Accessors are hidden methods that intercept access on properties. Falcon accessors work on
"virtual" properties. In short, you don't have to declare any property for the accessors to work on
that; just declare the accessors for read, write or both the operations, and a "phantom" property will
be created for you.

Write accessors are declared by creating a function named __set_propname, while read
accessors are declared with __get_propname. It's two underline characters "_" followed by "set"
or "get", another underline and the property name you want to mask.

For example, this creates an accessor for the mean property, which returns the mean of a series.
class Series(values)
 values = values

 function __get_mean()
 sum = 0
 for i in self.values: sum += i
 return sum / self.values.len()
 end
end

s = Series([14,53,18,8])
> "The mean is: ", s.mean // 23.25

As there isn't any __set_mean function declared in the class, mean is considered a read-only
property; trying to set it to a different value will cause an AccessError to be raised.

The __set_ accessor receives as a single parameter the value that should be set in the property.
The following code ensures that the property value is a number in the 0..100 range.
class Guarded(value)
 _value = 0

 // We can't declare a "value" property, but...
 init
 // we can initialize it via accessors here:
 self.value = value
 end

 function __set_value(v)
 if v.typeId() != NumericType: raise "Assigned not numeric value to 'value'"
 if v < 0 or v > 100: raise "Assigned value out of range to 'value'"
 > "Setting value ", v
 self._value = v
 end

 function __get_value(): return self._value
end

g = Guarded(10)
> "Initial value: ", g.value

g.value = 30
> "Value is now: ", g.value

It is also possible to declare just the __set_ accessor for a given property. In that case, the

Falcon Survival Guide 67/130

property becomes "write only" and can't be read back. This can be useful to create "plug points" that
alter the host object depending on the data they receive, like in the following example:
class WOnly()
 data = nil

 init
 self.randomSeed = (seconds() * 1000) % 1000
 end

 function __set_randomSeed(seed)
 randomSeed(seed)
 self.data = random()
 end
end

> "New random number: ", WOnly().data

Notice that it's not possible to create a real property with the same name of a property
guarded through accessors. Doing so will cause a Syntax Error for duplicate property
name in class declaration to be raised. Multiple inheritance

One class (or one object) can be derived from multiple classes. The resulting class (or object) will
have all the properties and methods of the subclasses. For example:
class parent1(p)
 prop1 = p
 init
 > "Initializing parent 1 with - ", p
 end

 function method1(): > "Method 1!"
end

class parent2(p)
 prop2 = p
 init
 > "Initializing parent 2 with - ", p
 end

 function method2(): > "Method 2!"
end

class child(p1, p2) from parent1(p1), parent2(p2)
 init
 > "Initializing child with ", p1, " and ", p2
 end
end

instance = child("First", "Second")

As the example shows, the initialization of the child class is performed after the initialization of its
parents, which is performed following the order in which the inheritance are declared.

The instance will have all its functions and methods, and all the methods declared in the base and
child classes.Base method overriding
It is often desirable that subclasses change the behavior of a base class by re-defining some

Falcon Survival Guide 68/130

methods. Creating a new method (or property) in place of a method (or property) with the same
name and parameters declared in a subclass is called overriding.

Once overridden, all the references to that property or method will receive the new member
provided by the subclass. Consider this example:
class base
 function mth(): > "Base method"
 function callMth(): self.mth()
end

class derived from base
 function mth(): > "Derived method"
end

When an instance of the base class is created, it's mth method member is the function that prints
"Base method". When an instance of the derived method is created, its mth method prints "Derived
method". The derived instance inherits the callMth method. As now the mth member is the one
provided by the derived class, the call self.mth() in its body will actually call the method in the
derived class.

Continuing the above example:
base_inst = base()
base_inst.mth() // prints "Base method"
base_inst.callMth() // again, prints "Base method"

derived_inst = derived()
derived_inst.mth() // prints "Derived method"
derived_inst.callMth() // again, prints "Derived method"

It is however possible to access the base method (or property) of a derived object. For example,
suppose that a class doesn't want to change a behavior of the base class, but just to extend it. Then it
has to call the base class method before doing or after having done special processing. To access the
method in the base class, the derived one must prepend the name of the base class to the name of
the method (otherwise, it would call itself). In our case, the base class name is just base, so if we
want to provide some callBase method in our derived class, it must be rewritten as follows:
class derived from base
 function mth(): > "Derived method"

 function callBase()
 > "pre-processing"
 self.base.mth()
 > "post-processing"
 end
end

derived_inst = derived()
derived_inst.callBase()

This will result in the base class method being called instead of the derived one. The base class
methods and properties may also be accessed from the main code directly; it is possible to append
the base class name after the instance name to reach the base class.

In the case of multiple inheritance, overriding may also happen among subclasses; if two or more
subclasses have a method with the same name, the classes being instantiated last are the ones
overloading former methods. In the following example, the mth method is offered by both
subclasses:
class first
 function mth(): > "First method"
end

Falcon Survival Guide 69/130

class second
 function mth(): > "second method"
end

class derived from first, second
end

instance = derived()
instance.mth() // "second method"
instance.second.mth() // again "second method"
instance.first.mth() // "first method"Private members
In object and class declarations, member names starting with the _ underline symbol can be
accessed only through the self object. This means that only the object, or the class that declared
them and its direct descendants, are able to access them. In case some of those properties or
methods are needed outside the instance, they must be returned (or modified) using an accessor, that
is a method returning or changing the property, as in the following example:
object privateer
 _private = 0

 function getPrivate(): return self._private
 function setPrivate(value): self._private = value
end

However, private members should be used mainly to store data that should not visible by other parts
of the program; for example they may be used to store an internal state or counter.

Subclasses can access private members declared by parent classes, but they can access them only
through the self object. It is not possible to access a private member through a base class; once
overloaded, the instances can access only the topmost overloading of the private member.Operator overloading
Falcon objects (and class instances) provide several callback hooks that are called when the virtual
machine applies operators on them. They all work similarly, by providing a method in the class or
object definition, and they all are relative to things done to the target instance. In short, the virtual
machine looks at the type of the first operand in an expression; if the operators are left-associative
(i.e. +, *, - etc), the first operand is the leftmost. If that operand is an object or instance, and if it
provides an appropriate overloaded method, that method is called and the other operands are passed
as parameters.

For example, that's how "+" operator can be overridden in a class:
class OverPlus(initValue)
 numval = initValue

 function add__(operand)
 return OverPlus(self.numval + operand)
 end
end

op = OverPlus(10)
nop = op + 10
> nop.numval //: 20

Falcon Survival Guide 70/130

Operator overloads are suffixed with "__" (two underlines) to indicate that they are
special, and to provide some "namespace protection" as names like "add", "sub" and
so on may be very common and used by developers for other reasons. However, the
overloaded nouns are not prefixed with underlines because this would make them
private, and there is no inherent reason to make them so. You may want to call the
overloaded methods directly, and if you can invoke them anywhere from the code
through language level symbols, there is no meaning in removing the ability to call
them or refer to them directly away from you.

Of course, a class may want to check the type of the operand, and eventually work gracefully with
compatible types. For example:
class OverPlus(initValue)
 numval = initValue

 function add__(operand)
 if operand provides numval
 return OverPlus(self.numval + operand.numval)
 elif operand.typeId() == IntegerType or operand.typeId() == NumericType
 return OverPlus(self.numval + operand)
 elif
 raise "Invalid type!"
 end
 end
end

op = OverPlus(10) + OverPlus(10)
> op.numval //: 20

Operator overloads are not bound to be read-only. If consistent, it is possible also to modify the
values in self, as in:
...
 function add___(operand)
 self.numval += operand
 return self
 end
...

Also, the return value is totally arbitrary; you may want to return a different value. This allows you
to create so called manipulators, having special significance in expressions as in the following
example:
object saver
 function add__(operand)
 > "Saving value... ", operand
 // save it to a file
 return operand
 end
end

persistent = saver + 100
> "data is ", persistent // 100

This model has two limitations: first, it's not possible for the second operand to take
control of the operator overloading. It's the first operand that is in control of
overloading. Second, all the operator overloading is performed in atomic mode. This
means that the virtual machine is not interruptible while inside those callback
methods, and that functions that may interrupt or suspend the workflow of the virtual
machine are forbidden. In short, calling sleep() from inside add__ would raise an
error, returning the VM to non-atomic mode and dumping all that's done inside

Falcon Survival Guide 71/130

callbacks.

Operators overloading is divided into the follow:

• mathematical operators overrides.
• comparison overrides.
• accessor ovverides.
• call overrides (functors).

Mathematical operator overloading
They are unary or binary operators overloading, working quite alike. Binary operators overloads
gets a single parameter (the second operand) and are usually, but not necessarily, expected to return
a value of the same type of self, or of the second operand:

• add__ Overloads "+" operator.
• sub__ Overloads "-" operator.
• mul__ Overloads "*" operator.
• div__ Overloads "/" operator.
• mod__ Overloads "%" operator.
• pow__ Overloads "**" operator.

NOTE: Since 0.9.6, "" is before the operators. So, we have "add", "__sub", etc.
Binary operator overloading works also when used as self assignment. For example, += operator
calls the add__ override and then stores the return value in the same variable that was used as self.
For example:
class OperOver(num)
 val = num
 function add__(v): return self.val + v
end

o = OperOver(10)
o += 5
inspect(o) // a numeric 15 value

Unary operators overloads receive no parameters; they are the following:

• neg__ Overloads the unary prefix negation operator ("-" in front of a symbol).
• inc__ Overloads the prefix "++" increment operator.
• dec__ Overloads the prefix "--" decrement operator.
• incpost__ Overloads the postfix "++" increment operator.
• decpost__ Overloads the postfix "--" decrement operator.

Comparison overloading
Comparison operators, namely <, >, <=, >=, == and != all refer to the same overloaded method:
compare. Notice the absence of the "__" suffix. This is both because of historical reasons and
because compare doesn't exactly overload operators, but serve a more complex purpose with a
different semantic.

The compare method is bound to return a number less than zero, zero or greater than zero if the
self item is respectively less than, equal to or greater than the comparand item, passed as parameter.
Contrarily to mathematical operators, the compare method should not raise an error in case the

Falcon Survival Guide 72/130

items are not comparable: Falcon VM prefers to have a strategy to sort all the items, even when
sorting has no physical reason. When the compare function hasn't any mean to determine a sorting
order, it should return nil; this informs the virtual machine that the override gave up, and that the
default ordering algorithm should be applied: items of different kinds are ordered based on the
value of their typeId() methods, and items of the same kind are checked based on the place they
occupy in memory.
class CmpOver(val)
 number = val
 function compare(oper)
 if oper provides number
 return self.number - oper.number
 elif oper.typeId() == NumericType or oper.typeId() == IntegerType
 return self.number - oper
 end

 // else let the VM do our work
 return nil
 end
end

ten = CmpOver(10)
> "Is ten > 5? ", ten > 5
> "Is ten != 3? ", ten != 3
> "Is ten <= 10? ", ten <= 10
> "Is ten > an array? ", ten > [1,2,3]

The compare method is not used just to resolve the comparison operators; it's used also when a
default ordering method is needed, for example, in dictionary key insertions and searches, or in
arraySort() call.

Important: as the compare method is invoked only on the first item of pair ordering checks, all the
members of a collection to be sorted. For example:
function cmpFunc(o)
 if o provides number: return self.number - o.number
 return nil
end

class CmpOne(val)
 number = val
 compare = cmpFunc
end

class CmpTwo(val, name)
 number = val
 name = name
 compare = cmpFunc
end

dict = [CmpOne(10) => "ten", CmpOne(5)=>"five", CmpTwo(7, "seven") => "seven"]

for k,v in dict
 > @"$(k.number) => $v"
end

In this example, the items stored in the dictionary as (ordered) keys are different, but they all agree
on the way they must be ordered (by sharing the same ordering function).

Subscript overloading
Access through the array subscript accessor () can be overloaded through the following methods:

• getIndex__ Overloads in read mode. Will receive 1 parameter (index), and should return an
item.

Falcon Survival Guide 73/130

• setIndex__ Overloads in write mode. Will receive 2 parameters (index, value), and it is
supposed to return the stored item.

Be careful about the fact that the index parameter is not necessarily just a number; it may be any
Falcon item, as the overrider may wish not just to implement an array semantic.

The following example implements a self-growing array, that enlarge itself when accessed out-of-
bound.
class GrowArray(initSize)
 content = nil

 init
 if initSize
 self.content = arrayBuffer(initSize)
 else
 self.content = []
 end
 end

 function len(): return self.content.len()

 function getIndex__(pos)
 pos = self.absolutize(pos)
 return self.content[pos]
 end

 function setIndex__(pos, value)
 pos = self.absolutize(pos)
 return (self.content[pos] = value)
 end

 function absolutize(pos)
 // for simplicity, consider only integer and not ranges.
 if pos < 0
 pos = abs(self.content.len() + pos)
 end

 if pos >= self.content.len()
 self.content.resize(pos+1)
 end

 return pos
 end
end

arr = GrowArray()
arr[1] = "one"
arr[2] = "two"
arr[3] = "three"
inspect(arr.content)

Call overrides and functors
In Falcon, a function call is actually considered an expression with two operands: the called item
and the parameter list. Objects can provide a call__ method to override the call operator (...).
Objects implementing a call__ method are called functors. Functors are function objects, that is,
objects that have their own state and internal methods, but that can be called as regular functions.

In the following example, we use a functor to iterate through a vector, returning an oob(0)
(functional break) when the scan is complete.
class gimmeNext(array)
 array = array
 pos = 0

 function call__()
 if self.pos >= self.array.len(): return oob(0)

Falcon Survival Guide 74/130

 return self.array[self.pos++]
 end
end

gn = gimmeNext(["one", "two", "three"])

while not isoob(data = gn())
 > data
end

The interesting part, the gn() call, is actually resolved into the invocation of the call__ method
in the functor.

Parameters passed to the call functor are translated into parameters for the call__ method:
object callTest
 function call__(a, b ,c)
 > "A: ", a
 > "B: ", b
 > "C: ", c
 end
end

callTest(1, 2, 3)

And of course, it's also possible to access the parameters through the variable parameter convention:
class promptPrinter(prompt)
 prompt = prompt

 function call__(/*var params */)
 for i in [0:paramCount()]
 > self.prompt, parameter(i)
 end
 end
end

pp = promptPrinter("::: ")
pp("Hello", "world", "there!")Automatic string conversion
It is often useful to turn an object into a string representation; this is done also by the virtual
machine in several occasions, as when adding the object to a string, or when printing through the
">" fast-print operator. To provide a suitable string representation, an instance may provide a
toString method, returning a string.

For example:
object Test
 function toString()
 return "I am the test"
 end
end

// automatic transformation to string
value = "Represent me " + Test
> value

// or also directly
> "Directly: ", Test

Notice that
> Test + "..."

Falcon Survival Guide 75/130

wouldn't work as expected: in that case, the add__ override is used instead.Object initialization sequence
Objects, or better, items automatically created with the object keyword, are actually instantiated
from a class that is not accessible to the script. This class is synthetically created and stored in the
module where the object resides; as the module is linked in the Virtual Machine, an instance is
created as if the script called the constructor. So this code:
 class my_class
 property = some_function()
 ...
end

my_object = my_class()

and this code:
 object my_object
 property = some_function()
 ...
end

are nearly equivalent. Nearly... but not quite, because the constructor of the stand alone objects, and
the complex initialization involving their property, is completely managed by the Virtual Machine
before the first instruction of the main script is executed.

In other words, even if a module does not provide a main code, and even if it's not the main script,
the VM may execute some code from it to initialize the objects it declares.

This provides a powerful and easy way to configure Falcon modules as they are loaded in the
virtual machine. However, this may actually bring two orders of problems.

The first problem is that the VM must be correctly configured for debugging, limiting script
execution time, controlling script memory consumption and so on before the script you actually
want to launch is launched; at link time, VM may execute some code, or even a lot of code, so the
VM must be set up correctly before the link sequence is initiated. But this is a problem that involves
the embedders, and it's a bit outside the scope of this guide.

The second order of problem is that the order of object initialization is undefined. Of course, objects
declared in a module A that is loaded by a module B are all initialized before the first object from B
gets the chance to be initialized, but the order by which the objects in A are initialized is undefined.

Usually, this is not relevant for the user, unless some of the objects in the code refer to some other
object in the module. Consider the following example:
object first
 list = [" one " , " two " , " three "]
end

object second
 sum = ""

 init
 for elem in first.list
 self.sum += elem
 end
 end
end

This code may work or not. By the time second is initialized, the list in first may have already

Falcon Survival Guide 76/130

been initialized or not. It's a 50% guess.

Luckily, the VM does some work for us, in the forecast that an item may reference some other item
in the initialization step.

First of all, before the first initialization is performed, all the items of the module are correctly
created, and their methods are readied. In this way, accessing properties of an arbitrary object is
possible, and its content will either be a valid method, nil, or the fully readied value, in case the
object has already been initialized. Filling all the non-method properties with nil allows eventual
callers, or the object itself, to understand if the initialization routine has been called or not.

The second thing the VM does for us is avoid re-initialization. So, if some property of some object
is initialized externally before the VM has the chance to call the automatic initializer, the already
provided value will be saved.

Given these two services, what the implementer must do to solve this situation is called
initialization on first use idiom (this is actually C++ terminology, but also works great here).

The init method of second, referencing first, should be kind on the first object by calling
some method of it that can set up the object in place of the automatic initializer. Even better, if
possible access to the required property should be performed only via a method that is meant only
for this reason. Those special methods are called accessors.

Here we see an accessor using the initialization on first use idiom in action.
 object first
 list = nil

 init
 // forces initialization if this has not still happened
 self.getList()
 end

 // accessor...
 function getList()
 // ... using init on first use idiom.
 if self.list = nil : self.list = [" one " , " two " , " three "]
 return self.list
 end
end

object second
 sum = ""

 init
 // Reading first.list via the accessor
 for elem in first.getList()
 self.sum += elem
 end
 end
end

printl("second.sum: ", second.sum)

The elegant part of this idiom is that the necessity to use it is present only during the initialization
step, that is, in the init block of objects, or in their property declaration clauses. Once the link step is
performed, (provided the init block and/or the property declarations do their jobs correctly, as in the
example for object first), the properties are correctly set up, and there isn't the need to go on using
the accessors to read the properties from an object.

The correct initialization of objects can be performed by following these simple rules:

As said, the main module and objects in other modules don't need to access other object properties
via accessors with init on first use idiom; however, be careful, as init routines and property

Falcon Survival Guide 77/130

initialization clauses may call functions that in turn may reference uninitialized objects.

So, if possible, avoid creating objects that need other objects being declared in the same module
during initialization phase. If you have to, if possible, isolate them in a separate module so that you
know that those object are correctly initialized, or be prepared to use the accessor instead of the
property within all the functions in the same module where the target object is located.Classes in functional sequences
When evaluated in functional contexts, classes generate instances as if they were directly called. For
example, you may fill an array of instances through a functional loop like the following:
class ABC(ival)
 id = ival
end

arr = []
1.upto(10, .[arr.add .[ABC &1]])
inspect(arr)Stateful classes
Since 0.9.6
Some kind of problems are better solved through "agents" or "machines" which are invoked to
respond to certain events or perform certain tasks, and provide a different behavior under different
situations. A scared bird
For example, let's take the example of a bird that needs to eat and is scared from people. The bird
can be in one of three states: famished, quiet and scared.

Initially, the bird is "quiet".
class Bird
 famine = 0

 init
 self.setState(self.quiet)
 end

//...

The bird can chose, each time, to be idle, eat or flee.
 function eat()
 > "The bird eats."
 self.famine = 0
 end

 function idle()
 > "The bird is idle"
 ++ self.famine
 end

 function flee()
 > "Flap flap flap..."
 ++ self.famine
 end

Falcon Survival Guide 78/130

We present the current situation to the bird via an "onEvent" callback, in which we'll tell the bird if
there's food and/or people around.

When the bird is quiet, it will ignore food, and get scared if a person approaches. After three turns,
it will get famished again.
 state quiet
 function onEvent(food_nearby, people_nearby)
 if people_nearby
 > "The bird is getting nervous."
 self.setState(self.scared)
 else
 self.idle()
 if self.famine > 3: self.setState(self.famished)
 end
 end
 end

When it's scared, it will flee when people is around; otherwise it will return to be quiet or famished
depending on the famine level.
 state scared
 function onEvent(food_nearby, people_nearby)
 if people_nearby
 self.flee()
 else
 self.setState(self.famine > 3 ? self.famished : self.quiet)
 end
 end
 end

when it's famished it will eat and get quiet, if there is no people around. Otherwise it will get scared.
 state famished
 function onEvent(food_nearby, people_nearby)
 if people_nearby
 > "The bird is getting nervous."
 self.setState(self.scared)
 elif food_nearby
 self.eat()
 self.setState(self.quiet)
 else
 self.idle()
 end
 end
 end

// end class:
end

We can now test this code with a simple sequence, like the following:
quail = Bird()
for i in [0:12]
 food = random(true, false)
 people = random(true, false)
 > @ "Step $i: Food=$food, People=$people"
 quail.onEvent(food, people)
 > "The quail is in state ", quail.getState()
endStates definition
As we intuitively seen in the previous paragraph, states are subsets of alternative methods that can
be active at any time on an object. Fromally...

Falcon Survival Guide 79/130

class ...
 [class declaration]

 state <state name>
 [state declaration]
 end

 ...

 state <state name>
 [state declaration]
 end
end

Each state declaration consists of zero or more function definition. It is not necessary that all the
states declare the same functions. If a state doesn't declare a method that is declared in another state,
when entering it the undeclared method is left unchanged. So if state A declares method one and
two, while state B declares only method two, when moving from state A to B, method one is left
untouched.

Method names declared in states can be present also in the class definition. When a state is not yet
applied, they are reachable and behave normally. Once a state redefining them is applied, the
methods declared in the generic class part are shaded (not anymore reachable in the host object),
but they are still available if accessed statically or through the base class name.

States are actually represented as string properties; so an expression like
className.state_name where state_name is the name of a state, resolves exactly in a
string "state_name".

The BOM methods setState and getState are normal methods. This allows to create
synthetically state names and apply them at runtime. Transition functions
Two special functions, called __leave and __enter, are called back respectively before a state
is applied (with the previous state still active), and after entering the new state. State transition is
performed as indicated in this pseudocode:
function setState(new_state)
 value = nil

 if self.__leave is callable
 value = self.__leave(new_state)
 end

 old_state = current state
 apply new_state

 if self.__enter is callable
 value = self.__enter(old_state, value)
 end

 return value
end

Both methods are optional and both can return a value (which is then returned by the setState
method). __leave is called in the previous state, and receives the target state name as the
parameter, while __enter is called after the new state is applied, and careceives the states that
was previously active.

If both the methods are provided, __enter receives also the value returned by __leave as second

Falcon Survival Guide 80/130

parameter; otherwise, if only __leave is provided, its return value is returned by setState to the
caller.

In our bird example, we wanted to notify the user about the fact that the bird is getting nervous
when it passes into the scared state. Adding this method to the scared state:
...
 state scared
 function __enter(origin, lr)
 > "The bird is getting nervous"
 end
 ...
 end
...

We can now be sure that this code is executed each time the state is entered.

Notice that controlling the return value of the setState() function it is possible to
implement Mealy automata models (a mathematic definition of a finite state machine
where output values obtained from input sequences are bound to state transitions).State inheritance

State definitions are are inherited subclasses. Subclasses can override parent classes states as a
whole; an overridden state will allow the subclass to define a new set of functions, or none at all, in
the given state.

In the following example the child inherits the A state, overrides the B state changing its functions,
empties the C state and declares a new D state:
class Base
 state A
 function callme(): > "A from base"
 end

 state B
 function callme(): > "B from base"
 end

 state C
 function callme(): > "C from base"
 end
end

class Child from Base

 state B
 function callme(): > "B from derived"
 end

 state C
 end

 state D
 function callme(): > "D from derived"
 end
end

c = Child()
c.setState("A")
c.callme()

c.setState("B")
c.callme()

c.setState("C") // still the same as B

Falcon Survival Guide 81/130

c.callme() // as C state is deleted

c.setState("D")
c.callme()

Multiple inheritance is applied to states with the same rules as it is applied to method and
properties: the rightmost child values override the left ones.The init state
A special state, called "init", can be declared to be applied immediately after the instantation of an
object, and exactly before the object is returned to the user.

Substantially, it's like setting the state at the end of the last executed init block in the topmost child.
class HavingInit

 init
 > "Instance created"
 end

 state init
 function callme(): > "from initial state"
 end

end

h = HavingInit()
a.callme() // already in init state

It is possible to re-enter the init state after having abandoned it via
instance.setState("init").

Init state and __enter method
The __enter method is in the init state is not useful just to manage transitions re-entering in the init
state after having left it. As __enter is called automatically when a state is applied, and the init state
is applied to an instance before returning it to the caller, the __enter method in the init state is
automatically called after an instance is completely prepared and setup.

This is interesting because it provides a callback that can be set by base classes to provide common
post-initialization code for a whole hierarcy.

Consider the following example: instances are automatically stored in a global dictionary under a
key that is filled by child classes. Normally, it is necessary to call a virtual function of the base class
from the client code after initialization, but whit __enter from init state you can set this behavior in
the base class:
globdict = [=>]

class Base
 init
 > "Base init"
 end

 state init
 function __enter()
 global globdict

 > "Enter method called for ", self.type
 if self.type notin globdict
 globdict[self.type] = [self]
 else

Falcon Survival Guide 82/130

 globdict[self.type] += self
 end
 end
 end
end

class TypeA from Base
 type = "Type A"

 init
 > "TypeA init"
 end
end

class TypeB from Base
 type = "Type B"

 init
 > "TypeB init"
 end
end

TypeA()
TypeA()
TypeB()
inspect(globdict)

As you can see from the sample, the base initializer is called before the child one, but then the
__enter method is applied after child initialization.Prototype based OOP
Classes and singleton objects have a fixed structure which cannot be changed during runtime. At
times, defining the structure of objects dynamically may be useful; for example , property tables
may be loaded from a file, or class definitions may be provided externally from another program.
Creating an instance is then a matter of copying the structure of an original model item (the
prototype), and this operation doesn't bind the structure of the new instance to stay faithful to the
base instance definition for its whole lifetime.

We have already seen that arrays can hold both ordinal data and bindings, and these bindings can
also be functions. When calling a function bound with an array, the value of self gets defined as the
array for which the function has been called. See the following example:
vect = ['alpha', 'beta', 'gamma']
vect.dump = function ()
 for n in [0: self.len()]
 > @"$(n): ", self[n]
 end
end

vect.dump()

So, arrays with bindings can be seen as instances of abstract classes, which also hold a ordered set
of 1..n values, which are accessible with the square accessors.

Dictionaries can provide another form of prototyped instances. String keys without spaces can be
seen as property and method names. To tell Falcon that we'd like to have a dictionary as a prototype,
we need just to bless it:
function sub_func(value)
 self['prop'] -= value
 return self.prop

Falcon Survival Guide 83/130

end

dict = bless([
 'prop' => 0,
 'add' => function (value)
 self.prop += value
 return self.prop
 end ,
 'sub' => sub_func
])

As the above example shows, it is possible to place in the dictionary data and functions, either
declared directly in the dictionary or elsewhere.

Notice the ; after each statement in the internal function declaration. It's necessary
because opening a parenthesis suspends the interpretation of end-of-line as statement
terminator. Also, notice that after the end of the first function, it is necessary to add a
comma, as the program flow returns immediately in parsing the dictionary being
formed, and a separation from the next element becomes necessary.

Blessing (that is, calling the bless function on the dictionary) is necessary because dictionaries
are meant to hold potentially huge amounts of data (in the order of several hundred thousand items);
the non-blessed dictionaries can be distinguished so that applying method on them doesn't require a
full scan of their content, but just a search on the standard dictionary methods. Without a blessing
mechanism, a simple len method applied on the dictionary would have caused first a complete
search in all the keys, and then the needed scan in the standard dictionary methods. This is often not
desired. Also, blessing a dictionary has the visual effect of declaring it as not just a dictionary.

Blessed dictionaries also can be accessed with the dot accessor, and functions stored in dictionary
values and retrieved through the dot accessor are called as methods, with the self item correctly
set to the owning item. Under every other aspect, they stay normal dictionaries; for example , as
shown in the sub function, they can still be accessed by their key. Adding new string keys has the
effect of adding new properties or methods dynamically; still, it is possible to add any item as a
dictionary key, and retrieve it as usual.
dict.add(10) // adding 10 to prop
> "test 1: ", dict.prop
dict.sub(5) // and now subtracting 5
> "test 2: ",dict["prop"] // accessing as a property

// Adding dynamically a new method
dict["mul"] = function(val); self.prop *= val; end
dict.mul(3)
> "test 3: ", dict.prop

Except for the fact that blessed dictionaries define their inner data to be accessible also via the dot
operator, and while array bindings do not reference the sequential data contained in the owning
array, they are mostly interchangeable; so we'll use just blessed dictionaries in the rest of the
chapter, eventually specifying specific behavior of dictionaries or array bindings.

Exactly as for class based OOP, properties declared with an underline sign _ are accessible only
through the self item, becoming private; however, they can be accessed normally through the
dictionary interface (they are just strings).Instance creation
A program relying on prototype OOP usually needs some means to create similar objects (the

Falcon Survival Guide 84/130

instances). This is usually achieved by two means: factory functions or instance cloning.

Prototype factory functions
The most direct way to create an object in prototype OOP is to have it returned from a function. For
example :
function Account(initialAmount)
 return bless([
 "amount" => initialAmount == nil ? 0 : initialAmount,
 "deposit" => function (amount); self.amount += amount; end ,
 "withdraw" => function (amount)
 if amount > self.amount: raise "Not enough money!"
 self.amount -= amount
 end
])
end

acct = Account(100)
> "Initial amount ", acct.amount

acct.deposit(10)
> "After a small deposit: ", acct.amount

Remember that a ; is needed after each statement when declaring functions inside dictionaries.

In this example, Account is a normal function, but it just returns a new instance of the dictionary.

Prototype cloning
The word prototype means that every object can be seen as a prototype of a hierarchy of cloneable
and differentiated objects.

Every Falcon item can be cloned through the clone method of the base FBOM system.
Continuing the above example:
nacct = acct.clone()
nacct.withdraw(100)
> @ "Left on acct $(acct.amount) and on nact $(nact.amount)."

Normally, clone performs a shallow copy of everything that's in the cloned object; this means that
other deep objects that may be contained in the instance (as, for example , arrays or other instances)
are not cloned themselves. To override the normal cloning process, it is possible to re-define the
clone method inside the object:
nacct["clone"] = function (amount)
 newItem = itemCopy(self)
 if amount: newItem.amount = amount
 return newItem
end

acct2 = nacct.clone(50)
> "New instance reinitialized with ", acct2.amount

Calling the clone will now invoke the function we have written; to avoid using the clone method
again (which would cause an endless recursion, we may either store it in a private property or use
itemCopy function as we did in this example.

Referencing the factory function
A particularly elegant technique is to have the factory function stored somewhere in the returned

Falcon Survival Guide 85/130

vector:
function Account(initialAmount)
 return bless([
 "new" => Account,
 "amount" => initialAmount == nil ? 0 : initialAmount,
 "deposit" => function (amount); self.amount += amount; end ,
 "withdraw" => function (amount)
 if amount > self.amount: raise "Not enough money!"
 self.amount -= amount
 end
])
end

instance = Account(10)
other = instance.new(20)
> "Amount in new instance: ", other.amount

This doesn't require copying the prototype, which may differ from the base idea of an initial
instance as it should be.A small prototype class sample
Classes themselves can be seen as objects. This is the base idea of reflection in reflective languages
as Java and C#. So, it is possible to create classes that will actually have the duty to configure new
instances and eventually provide some basic services.

In this example, we create a base class which gives birth to an instance:
base = bless([
 "new" => function (prop)
 return bless([
 "class" => self,
 "method" => self["method"],
 "property" => prop
]);
 end ,

 "method" => function (); > "Hello from ", self.property; end
])

inst = base.new("me")
inst.method()

// outputs
Hello from me

Notice the usage of the array access operator instead of the dot operator to retrieve method during
instance creation. Accessing an object via the dot operator, we'd store in the final instance method a
reference to the object where the method was declared (that is, our base class). Calling
inst.method would then actually resolve in calling base.method; this is not what we want. The
idea is that the final method gets called having the newly created instance as self. By retrieving the
method as a simple content of the dictionary, we can propagate it to the child instances, which will
see them as functions, and transform them in correct methods as the dot operator is applied.Operator overloading
As with standard Objects and Classes, prototype object operators can be overloaded. The concept
described in Objects and Classes is essentially the same for prototype objects. One only need define
the specific operator to overload. Operators fall into the following categories:

Falcon Survival Guide 86/130

• mathematical operators overloading
• comparison overloadin

Mathematical operator overloading
Binary operator overloading take a single parameter (the second operand) and are usually, but not
necessarily expected to return a value of the same type as self, or of the same type of the second
operand. Binary operators are:

• add__ Overloads "+" and "+=" operators
• sub__ Overloads "-" and "-=" operators
• mul__ Overloads "*" and "*=" operators
• div__ Overloads "/" and "/=" operators
• mod__ Overloads "%" and "%=" operators
• pow__ Overloads "**" operator

imBlessed = bless ([
 'angel' => 100,
 'devil' => 25,
 'add__' => function(val)
 printl('add__ called')
 self.angel += val
 return self
 end,
 'sub__' => function(val)
 printl('sub__ called')
 self.devil -= val
 return self
 end
])

imBlessed += 25
> imBlessed.angel
aBitLess = imBlessed - 50
> aBitLess.devil

// OUTPUTS:
add__ called
125
sub__ called
-25

Unary operators overrides receive no parameters; they are the following:

• neg__ Overloads the unary prefix negation operator ("-" in front of a symbol).
• inc__ Overloads the prefix "++" increment operator.
• dec__ Overloads the prefix "--" decrement operator.
• incpost__ Overloads the postfix "++" increment operator.
• decpost__ Overloads the postfix "--" decrement operator.

Little contrived example using neg__ and incpost__
unaryExp = bless ([
 'chg' => 100,
 'incpost__' => function()
 printl('incpost__ called')
 self.chg = self.chg + 1
 return self
 end,
 'neg__' => function()
 printl('neg__ called')
 self.chg *= -1
 return self
 end

Falcon Survival Guide 87/130

])

unaryExp++
> unaryExp.chg
tmp = - unaryExp
> tmp.chg

// OUTPUTS:
incpost__ called
101
neg__ called
-101Comparison overload
Comparison operators, namely <, >, <=, >=, == and != all refer to the same overload method:
compare. Notice the absence of the "__" suffix. This is both because of historical reasons and
because compare doesn't exactly overload operators, but serve a more complex purpose with a
different semantic.

The compare method is bound to return a number less than zero, zero or greater than zero if the
self item is respectively less than, equal to or greater than the comparand item, passed as parameter.
Contrarily to mathematical operators, the compare method should not raise an error in case the
items are not comparable: Falcon VM prefers to have a strategy to sort all the items, even when
sorting has no physical reason. When the compare function hasn't any mean to determine a sorting
order, it should return nil; this informs the virtual machine that the overload gave up, and that the
default ordering algorithm should be applied: items of different kinds are ordered based on the
value of their typeId() methods, and items of the same kind are checked based on the place they
occupy in memory.Message Oriented Programming
Message oriented programming (MOP) consists in writing program sections generating and
replying to messages (happening now, in the future or even happened in the past) instead of writing
direct calls.

Falcon MOP is constituted by three distinct inter-operating entities:

• subscriptions: requests to be notified about events.
• broadcasts: generation of temporary messages.
• assertions: persistent messages that stays in the environment until retracted.

A message is formed by a name (also called event) and zero or more parameters. The event is
always and exclusively a string, while any Falcon item can be used as parameters.

As a simple example of MOP, let's rewrite a MOP-oriented printl:
subscribe("printl", {tbp => >tbp})
broadcast("printl", "Hello world!")

The subscribe call informs the system that we want to reply to printl events through the given
handler, in our case, the given code block that just prints one parameter. The broadcast call
sends the parameters (in this case, just "Hello world!") to all the subscribed handlers, if there is any.

Falcon Survival Guide 88/130Assertions
Falcon messaging model allows to post a single item temporarily or permanently associated with a
message.

For example, suppose that some module can be started either before or after some "goodStuff" get
readied. We want to complete our work only after we can put our hands on the "goodStuff". So,
class MyStuff
 // private data...
 ready = false

 init
 subscribe("goodStuff", self.configure)
 end

 // more stuff...

 function configure(stuff)
 // good, we have the good stuff
 //... use the stuff to do things...
 self.ready = true
 end
end

In another part of the program, the assertion can be posted like this:
assert("goodStuff", "Some stuff to be sent around")

This causes all the already created instances of MyStuff to be configured at once, and allows new
instances created from now on to be immediately configured.

Listeners can unsubscribe from listening messages and assertions through the unsubscribe
function, passing the event to which they wish to unsubscribe and themselves.

In example, as configuration is one-time action, the above MyStuff class may wish to unsubscribe
once received the message, so the configure method can be rewritten as:
 function configure(stuff)
 // ... rest as before
 unsubscribe("goodStuff", self.configure)
 end

It is possible to issue a broadcast with the same name of an existing assertion, so subscriptions to
events will respond both to assertions and broadcast on that event. Asserting over a previously
existing assertion replaces the previous one with the new data, and also notify the change by re-
broadcasting the new value.

To remove an existing assertion use the retract function:
// no more good stuff this days
retract("goodStuff")

Retracting a non-existing assertion will raise an error.

Finally, it is possible to query for the current value of an assertion:
assert("goodStuff", "Really good stuff")
> getAssert("goodStuff")

Normally, getAssert function raises an error if there isn't any assertion active on the required
event, but it's also possible to provide a default value that is returned in case the assertion isn't

Falcon Survival Guide 89/130

found, as in the following example:
> getAssert("non-existing", "Ops, we didn't found an assert")Broadcast Control
Broadcast is performed synchronously. The caller of broadcast waits that the subscribers reply to the
broadcast in turn, and returns the value that was returned by the last handler.

The order by which handlers are called is the same order in which they have subscribed. To prevent
other handlers to get in control of the message, the subscriber must call the function consume,
which will grant that after it returns, the broadcast will be interrupted and the broadcast function
will return its same return value. The following example shows how an appointed subscriber can
reply to a message returning a value to the broadcast caller.
// create a couple of receivers
function f1(target, value)
 if target == "by100"
 consume()
 return value * 100
 end
end

function f2(target, value)
 if target == "by500"
 consume()
 return value * 500
 end
end

// subscribe the two receivers
subscribe("multiply", f1)
subscribe("multiply", f2)

// multiplying a value depending on the target:
> "Mult 2 by 100: ", broadcast("multiply", "by100", 2)
> "Mult 2 by 500: ", broadcast("multiply", "by500", 2)

// and a non-existing target...
> "Mult 2 by 1000: ", broadcast("multiply", "by1000", 2)

A late subscriber can be put on top of the subscribers list by passing an extra true value as the last
parameter of subscribe. In this way, a message filter coming after other subscribers can prevent the
passage of the message to original subscribers by consuming it:
function f1(): > "I am f1"
function f2(): > "I am f2"
function f3(): > "I am f3"
function f4(): > "I am f4"

// subscribe regularly f1 and f2
subscribe("printme", f1)
subscribe("printme", f2)

// but give more priority to f3 and f4
subscribe("printme", f3, true)
subscribe("printme", f4, true)

broadcast("printme")

As seen, the call order becomes {f4, f3, f1, f2}, as the topmost item is f4, inserted with priority on
top of f3, they both inserted with priority with respect to f1 and f2.

It is possible to broadcast a message in without waiting for its result creating a coroutine ad hoc for

Falcon Survival Guide 90/130

this. We'll explain coroutine in a later chapter, but it's worth to see that, if one doesn't need the
broadcast to be in sync with the caller, it can write it as:
launch broadcast("anEvent", ...)

Similarly, it is possible to perform a broadcast from a different thread, but threading is argument for
another document.Cooperative broadcast
At times, it's not just useful to "steal" the broadcast signal from the following handlers. It may be
also useful to cooperate to form a common result, or to perform different steps of a common work.

Broadcast parameters can be any Falcon item, including arrays, dictionaries and objects. Each
participant in the broadcast may alter or manipulate the incoming item(s), as in the following
example, where a first subscription step allows participants to ask for a subsequent call.
class Subber(id)
 id = id

 init
 subscribe("process", self.subMe)
 end

 function subMe(requests)
 // will I be taking the second step?
 if random(10) < 5: requests += .[self.callMe]
 end

 function callMe()
 > @"Subber $self.id was called back!"
 end
end

// all the subbers
subbers = []
for i in [0:10]: subbers += Subber(i+1)

// action they want us to do
requests = []
broadcast("process", requests)

// do them
for req in requests: req()

The broadcast of the above example gives all the listener the chance to post a request in the vector
that is being formed during the process. When the broadcast is complete, the main program
executes each posted request.

This allow also for "auction" based broadcast, where the subscribers find an agreement on who
should actually process the message as described as the following example shows:
class BidToken
 value = 0
 callback = {=> >"No winner" }
end

class Player(id)
 id = id

 init
 subscribe("play", self.subMe)
 end

 function subMe(tk)
 // tk is a bid token.

Falcon Survival Guide 91/130

 bet = random(10)
 if bet > tk.value
 tk.value, tk.callback = bet, self.callMe
 end
 end

 function callMe()
 > @"Player $self.id won the auction!"
 end
end

// all the players
players = []
for i in [0:10]: players += Player(i+1)

// action they want us to do
tok = BidToken()
broadcast("play", tok)
// elect the winner
tok.callback()Automatic marshaling
Objects, instances and blessed dictionaries can be used directly to receive broadcasts, even if they
are not callable items. By subscribing a message with an instance, the subscriber indicates that it
wants that message marshaled to a function named "on_" + the event name. In example, if an object
is suscribed to an event named "bcast", in case "bcast" is broadcast, its "on_bcast" method will be
called back.
object Processor
 init
 subscribe("bcast", self)
 subscribe("evt", self)
 end

 function on_bcast(): > "Received a bcast"
 function on_evt(): > "Received an evt"
end

broadcast("bcast")
broadcast("evt")

In case the subscribed item doesn't provide the needed callbacks, a MessageError is raised. The
check is performed at broadcast time because prototype oop constructs may change their structure
in the meanwhile, and class instances may change the type of existing properties, making them non
callable.Message Slots
Falcon manages subscriptions, broadcasts and assertions through an object called Slot. This object
is reflected and accessible from scripts through the VMSlot class.

A VMSlot can be accessed through two means: using the getSlot function or creating a VMSlot
instance. In the first case, if the desired slot doesn't exist (that is, if there aren't any subscriptions or
assertions active for that slot), an error is raised; in the second case, the slot is created anyhow, and
eventually connected to the Slot data if it's not empty.

Operating on VMSlot methods is totally equivalent to using the homologous functions; the only
difference is that the event parameter is missing, as it's included in the VMSlot object, and any
operation on VMSlot is faster as the VM doesn't need to search its internal slot database for the

Falcon Survival Guide 92/130

required event.
For example:
slot = VMSlot("event")

subscribe("event", function(); > "Received an event"; end)
slot.broadcast() // == broadcast("event")

or even:
subscribe("event", function(); > "Received an event"; end)
slot = VMSlot("event") // connects to "event" subscriptions
slot.broadcast()

It's possible to create multiple instances of the same VMSlot, even in different modules and in
different threads; they all refer to the same internal Slot data. So, in case you want to use a VMSlot
for faster operation in different unrelated parts of your program, you can simply create a local
instance.

Iterating on VMSlots
An interesting characteristic of the VMSlot abstraction is that it is possible to iterate over them in
for/in loops. Each loop receives a subscriber in the same order respected by broadcast. Using
continue dropping to delete an item from the collection has the same effect as unsubscribing
the handler.

For example:
// some subscriber
function f1(): > "I am f1"
function f2(): > "I am f2"
function f3(): > "I am f3"

// subscribe all of them
slot = VMSlot("bcast")
dolist(slot.subscribe, [f1,f2,f3])

// Let's say we don't like f2
for subscriber in slot
 >> subscriber
 if subscriber == f2
 > " (we don't like it)"
 continue dropping
 end
 > " (ok)"
end

// broadcast
>
> "Broadcasting now."
slot.broadcast()

The broadcast will activate only f1 and f3 as f2 has been effectively unsubscribed.

Warning: Better not to use this when the slots can be broadcast from other
threads without a proper protection to avoid concurrency on the broadcast list.

The VMSlot class provides also first and last methods that return an iterator that can be used
to scan and modify the subscription list.

Falcon Survival Guide 93/130Tabular programming
Long before fourth generation languages appeared, long before compilers appeared, even long
before computers ever appeared, there was a time in which people needed to categorize things
efficiently and effectively into simple, easily understandable and useful groups.

Tables have been the most effective categorization tool for hundreds years, and they still make the
fortunes of marketing and strategy gurus. Compared to them, the formal definition of “class” as we
know it as the base of object oriented programming is relatively young. Actually, outside IT labs,
people use tables to analyze situations and drive decisions. Unsurprisingly, every managerial
decision making system involves some sort of grid, or table, that can easily be built with advanced
instruments such as pencil & paper, and these tools can drive decisions worth billion of dollars.

Despite this, IT has relegated tables to the ancillary role of storing data. L ots of interesting data, for
sure, but still just data.

Falcon can employ tables to drive program logic as they can drive decision making systems.

Tables are classes
The base of tabular programming is the Table class, which is absolutely a normal class except for
some very special interactions with arrays that are handled transparently. It would be more accurate
to say that arrays know what a Table instance is, and are kind with them, rather than seeing the
Table class as special .

More precisely, a Table is a class that stores a set of rows, each of which is an array, and a heading
which describes the meaning of each column. Tables can have one or more pages, that is, sets of
rows that can be accessed at a time, and each heading can optionally be provided with “column
data” whose semantic value can vary depending on the operations being performed. Both data in
rows and column data can be any Falcon object, including other tables, while column names are
limited to strings (not necessarily, but preferably, not containing whitespace).
>>> x = Table(["name", "income"],
... ['Smith', 2000],
... ['Jones', 2800],
... ['Sears', 1900],
... ['Sams', 3200])
: Object

We have just created a table, which is a standard object, with a mandatory first parameter (the
column heading) and a set of rows (each one in a different parameters).

Rows can be then accessed through the get method, which returns an array (the row).
>>> inspect(x.get(0))
Array[2]{
 "Smith"
 int(2000)
}

Falcon sees tables as sequences, so it is possible to iterate on each row:
>>> for l in x
... > @ "name: $(l[0]:r10) income: $(l[1]:r6)"
... end
name: Benson income: 2300
name: Smith income: 2000
name: Jones income: 2800
name: Sears income: 1900
name: Sams income: 3200

Falcon Survival Guide 94/130

Arrays stored in tables stay available to the outside. For example ;
>>> row = ['Benson', 2300]
: Array
>>> x.insert(0, row)
>>> row[1] = 2450
: 2450
>>> inspect(x.get(0))
Array[2]{
 "Benson"
 int(2450)
}

They also assume two important properties. First, they become immutable; their size stays fixed to
the number of columns in their table (which can vary later on); yet, it is possible to change each
element, as long as this doesn't shrink or grow the array. Second, they inherit the table columns,
which references their entries. In other words, the row variable of the example above knows that it
is part of a table, and that its first element can also be called “name”, while its second element can
be called “income”.
>>> row.name
: Benson
>>> row.income = 2500
: 2500
>>> inspect(row)
Array[2]{
 "Benson"
 int(2500)
}

Like any other array, table rows can also have bindings; the main difference between the bindings
and the table column names is that bindings lay beside the array, while table names lie inside it, and
allow indirect access of their ordinal content. This allows virtualiz ing the array as an accessible
object when needed, while accessing it with a direct index for when higher performance is
necessary.

As for pure bindings, methods extracted from the array by their column names can refer the self
item;
>>> row.income = function(); return self.name.len() *800; end
: Function _lambda#_id_1
>>> row.income()
: 4800

and they can also refer the table they come from:
>>> row.income = function(); return self.table().get(self.tabRow()+1).income + 100;end
: Function _lambda#_id_2
>>> row.income()
: 2100

The code above refers the table and the row in the table at which our self is placed. The table
and tabRow methods are pre-defined methods of the Falcon Basic Object Model. The FBOM are a
set of methods, some common to all the Falcon items, other specific of some item types, which can
be generally applied to any Falcon item, including numbers, strings and even nil.Default Values
As said, tables can be provided with column values. They can be added at initialization using future
bindings in the heading entry:

Falcon Survival Guide 95/130

>>> table = Table(
... [name|"unknown", income| {=> self.name.len()*100}],
... [nil, nil],
... ["Smith", nil],
... ["Sams", 2500])
: Object

This created a table with two columns, each having an associated column value.
>>> for row in table
... > row.name, ": ", valof(row.income)
... end
unknown: 700
Smith: 500
Sams: 2500

They can also be accessed directly through the columnData method;
>>> table.columnData(0) // access
: unknown
>>> table.columnData(0, "known") // change
: unknown
>>> table.get(0).name
: known

Table operations
Other than providing names and defaults to access row elements, tables have a set of logical
operations that can be used to perform code selection and branching.

The choice method feeds all the rows in the table to an external function for evaluation; the row that
gets the highest value is then selected and returned. For example , suppose that we have to pick the
discount function to be applied to a certain customer. The next sample program is a bit complex, so
it's better to save it in an editor and execute it from the command line:
offers = Table(
 .['base' 'upto' 'discount'] ,
 .[0 2999 { x => x }] ,
 .[3000 4999 { x => x * 0.95}] ,
 .[5000 6999 { x => x * 0.93}] ,
 .[7000 0 { x => x * 0.9}])

function pickDiscount(pz, row)
 if pz >= row.base and (row.upto == 0 or pz <= row.upto)
 return 1
 else
 return 0
 end
end

The pickDiscount function will receive a pz parameter needed for configuration and a row; the row
is the element in the table that the choice method extracts and feeds into pickDiscount, Then, if the
value of the pz variable is between the base and upto items in the row, 1 is returned; in all the other
cases, 0 is returned. This means that the function will select that row where our value lies.

The following statement performs an evaluation, passing 3500 as the pz value, and then applying
the discount code block of the row that applies to an arbitrary price.
> offers.choice([pickDiscount, 3500]).discount(500)

We can build a more interesting “all in one” function; see the following examples.
offer = .[offers.choice .[pickDiscount &qty] 'discount']

Falcon Survival Guide 96/130

We created a functional sequence made of the choice method on the offer table and the callable it
should receive to pick the desired row. The callable itself uses a qty binding that can be configured
later on; then, instead of accessing the discount column via the dot accessor (or using the at
function), we can use the extra parameter of the choice method, which designs a single column
value to be returned. Calling this offer function, we automatically select the discount that is to be
applied to customers having a ranking as designed by the qty binding.

This may be used like the following:
offer.qty = 500
> "Price 500 discounted for a small customer: " , offer()(500)

offer.qty = 3200
> "Price 500 discounted for a medium customer: " , offer()(500)

offer.qty = 6300
> "Price 500 discounted for a big customer: " , offer()(500)

The program runs with this result:
Price 500 discounted for a small customer: 500
Price 500 discounted for a medium customer: 475
Price 500 discounted for a big customer: 465

The advantage of using tables for data definitions instead of switches, cascades of nested ifs,
method overriding in class hierarchies and so on is that the parameter definitions may be changed
live, as the program runs. A new row may be inserted, a new column may be added, the discount
conditions or the level limits may be altered, and still our offer functional sequence would reflect
the up-to-date status of the condition table.

An interesting feature of tables is that of being able to swap all its data at once, through pagination.

Table pages
Tables can have an arbitrary number of pages which can be independently grown, shrunk, changed
and generally updated. All the pages share the same column structure and column data; only the
rows are changed. So, inserting, removing and changing columns is immediately reflected on every
row of every page. Each page can have a different size, and rows extracted from a page are also
available when switching the active page.

Activating a page will have the effect of causing get, find, insert, remove and other table-wide
operations to be performed exclusively on the current page.

For example , suppose we have a set of bank account meta-data, as the interest rate for a certain
account category. Then, a table may store all the account types and their interest rates in different
pages, which can be marked at different times.

The following class extends the base Table so selecting a page depends on the year for which
calculations are required.
object AccTable from Table(["name" , "rate_act" , "rate_pasv"])

 init
 // in year 2007
 self.insertPage(nil , .[
 .['basic' 2.3 8.4]
 .['business' 0.8 4.2]
 .['premium' 3.2 5.3]
])

 // in year 2008
 self.insertPage(nil , .[

Falcon Survival Guide 97/130

 .['basic' 3.2 7.6]
 .['business' 1.1 4.5]
 .['premium' 3.4 5.2]
])
 end

 // set the current year
 function setYear(year)
 if year < 2008
 self.setPage(1)
 else
 self.setPage(2)
 end
 end

 // get rates
 function activeRate(acct, amount)
 return amount + (self.find('name' , acct).rate_act / 100.0 * amount)
 end
end

// A bit of calcs.

// what should a premium account get for 1000$ on 2007?
AccTable . setYear(2007)
> "Premium account with 1000$ on 2007 was worth: " , \
 AccTable.activeRate('premium' , 1000)

AccTable . setYear(2008)
> "Premium account with 1000$ on 2008 was worth: " , \
 AccTable.activeRate('premium' , 1000)

Via the setYear method, we have been able to change the underlying data definition and
transparently use new calculation parameters. This could also have been easily done with simpler
methods, and would definitely also fit OOP; but suppose that it's not just a parameter change in
years, but the whole logic that regulates refunds of credit accounts.

Suppose, for example , that starting from year 2007 the bank starts to add a fixed commission of
$50 for accessing credit lines.
object AccTable from Table(["name" , "rate_act_func" , "rate_pasv_func"])

 init
 // in year 2007
 self.insertPage(nil , .[
 .['basic' { x => x * 2.3 / 100} {x => x * 8.4 / 100 }]
 .['business' { x => x * 0.8 / 100} {x => x * 4.2 / 100 }]
 .['premium' { x => x * 3.2 / 100} {x => x * 5.3 / 100 }]
])

 // in year 2008
 self.insertPage(nil , .[
 .['basic' {x => x * 3.2 / 100} {x => x * 7.6 / 100 + 50}]
 .['business' {x => x * 1.1 / 100} {x => x * 4.5 / 100 + 50}]
 .['premium' {x => x * 3.4 / 100} {x => x * 5.2 / 100 + 50}]
])
 end

 // set the current year
 function setYear(year)
 if year < 2008
 self.setPage(1)
 else
 self.setPage(2)
 end
 end

 // get rates
 function creditCost(acct, amount)
 return self.find('name' , acct).rate_pasv_func(amount)
 end

Falcon Survival Guide 98/130

end

// A bit of calculation.

// what should a premium account get for 1000$ on 2007?
AccTable.setYear(2007)
> "Asking for 1000$ on 2007 costed: " , \
 AccTable.creditCost('premium' , 1000)

AccTable.setYear(2008)
> "Asking for 1000$ on 2007 costed: " , \
 AccTable.creditCost('premium' , 1000)

The output of this program is:
Asking for 1000$ on 2007 costed: 53
Asking for 1000$ on 2008 costed: 102

Doing the same thing with traditional OOP constructs would require to program this variability
since the very beginning of the project, or face the eventuality that the classes initially designed to
represent bank accounts will be missing just the last sparkle of flexibility needed to implement the
last twist that the marketing guys have thought of to make their bank sexier.

OOP is very flexible, and Falcon adds tons of flexibility to the base model already, providing rich
functional constructs, prototype oriented OOP and so on. But at times, this just isn't enough, and
thinking of some problem category as two dimensional tables (or eventually as three-dimensional
tables-in-time as in this example) fits much better the more destructured and pragmatic approach to
problem definition and analysis that business professionals are accustomed to use (and send down
to the development departments for implementation).

Additionally, tables have some further utility worthy of consideration.

Table-wide operations
For brevity, we'll consider only one significant operation taking the whole contents of the (current
page of a) table.

Other operations are described in the Table class reference, and exemplified in other manuals.

The bid method selects a row given a column. The rows must provide an evaluable item (i.e. a
function) at the specified column; the item is called in turn, and must return a value greater than
zero. At the end of the bidding, the item offering the highest value will be selected.

Consider the following simulation: several algorithms are struggling to win the highest possible
number of auctions out of N (a number known in advance). One algorithm bids a fixed amount,
another bids a random amount and a third bids a base price doubling it each if it doesn't win. After
each bidding, the bid amount is removed from a pool of resources initially given to each bidder.

The first two algorithms haven't any state, so they are quite easy to code:
// a function always betting the same value
function betFixed()
 return self.table().amount / self.table().turns
end

// a function always betting a random value
function betRandom()
 return self.table().amount * random()
end

The last algorithm must remember its previous bet, and if it was a winning bet or not. We'll have
then a state property, called storage , where the bid is placed, and a property filled by the calling

Falcon Survival Guide 99/130

table indicating if the algorithm was winning in the previous turn or not. As this information may be
interesting for every bidder, it will be placed in a table column called hasWon . Each turn, this
column will be reset and the winner row will have this value set.
// a function betting each time the double of the previous time
function betDouble()
 if self.hasWon
 bid = self.table().amount / self.table().turns / 2
 else
 if self provides storage
 bid = self.storage * 2
 else
 bid = self.table().amount / self.table().turns / 2
 end
 end

 self.storage = bid
 return bid
end

We'll see first how the algorithm works without the help of tabular programming, and then see how
table operations can be employed to simplify it.

The table heading is like the following:
class BidTable(amount, turns) \
 from Table(["name", "bet", "amount", "hasWon", "timesWon"])
 amount = amount
 turns = turns

A simple utility method allows correct creation of our rows:
 function addAlgorithm(name, func)
 self.insert(0, [name, func, self.amount, false, 0])
 end

The betting process involves calling all the algorithms, recording what they bet, provided they can
pay using what's left of their initial account, and removing the bet quantity from the accounts. Then,
the algorithm having bet the highest value is declared to be the winner:
 function bet(time)
 > "Opening bet ", time+1, ": "

 winning = nil
 winning_bid = -1

Each row is taken in turn for betting:
 for row in self
 bid = row.bet()
 if bid > row.amount: bid = row.amount
 > @" $(row.name) is betting $(bid:.2) out of $(row.amount:.2)"
 row.amount -= bid

Then, if this bet is better than the others, it is recorded as the temporary winner:
 if bid > winning_bid
 winning = row
 winning_bid = bid
 end
 end

Finally, it is necessary to declare the winner; to do this, we must scan all the table and set the
winning flags correctly for each participant:

Falcon Survival Guide 100/130

 // declare the winner
 for row in self
 if row == winning
 winning.hasWon = true
 winning.timesWon ++
 > " ", row.name, " wins this turn!"
 else
 winning.hasWon = false
 end
 end
 end

The game consists of playing the bet stage for the required amount of times, and picking up the
final ranking.
 function game()
 for i in [0:self.turns]
 self.bet(i)
 end

 > "===================================="
 > " Final Ranking "
 > "===================================="

We can use the arraySort function to sort the algorithms taking into account the times they have
won. The getPage table method will take a copy of the page as it is now as an array containing all
the rows, and that can be sorted leaving the actual data in the page untouched. The sorting just
requires a function returning 1, 0 or -1 depending on the order that needs to be applied; the
compare FBOM method applied on the timesWon table property will play the trick.
 bidders = self.getPage()
 arraySort(bidders, { x,y => -x.timesWon.compare(y.timesWon) })
 for id in [0:bidders.len()]
 >> @ "[$(id)] $(bidders[id].name) with $(bidders[id].timesWon) victor"
 > bidders[id].timesWon == 1 ? "y" : "ies"
 end
 end
end

There is nothing else to do but fill the table and start the game:
randomSeed(seconds())

bt = BidTable(100, 6)

bt.addAlgorithm("Mr. fix", betFixed)
bt.addAlgorithm("Random-san", betRandom)
bt.addAlgorithm("Herr Double", betDouble)

bt.game()

The method bidding of the Table class does more or less what the bidding function we have
created does in a table: it calls a method stored in a column, recording the one that returned the
highest value and returning it. However, the loop in the bid method of this sample is not just
selecting the row with the algorithm returning the highest value; it also changes the status of each
row. We'll need then an extra column where to store a method doing some house cleaning before
and after the call of the betting algorithms:
function genericBetting()
 bid = self.bet()
 if bid > self.amount: bid = self.amount
 > @" $(self.name) is betting $(bid:.2) out of $(self.amount:.2)"
 self.amount -= bid
 return bid
end

Falcon Survival Guide 101/130

We may store this generic cleanup routine in another column, as column wide data, so that it will be
normally used if the corresponding cell is nil when the bid is performed:
class BidTable(amount, turns) \
 from Table(["name", "bet", "amount", "hasWon",
 "timesWon", genbid|genericBetting])
 amount = amount
 turns = turns

 function addAlgorithm(name, func)
 self.insert(0, [name, func, self.amount, false, 0, nil])
 end

Notice the genbid column, which is given nil in addAlgorithm .

Now the bet function can be much simpler:
 function bet(time)
 > "Opening bet ", time+1, ": "
 winner = self.bidding('genbid')
 > " ", winner.name, " wins this turn!"
 winner.timesWon ++

Instead of clearing all the hasWon properties during the genbid calls, and setting here the value
for the winner, we use this method which does the same in one step:
 self .resetColumn('hasWon', false, winner.tabRow(), true)
 end

The rest of the program is unchanged.

The method choice is similar to bidding, but it calls a generic function provided during the call.
As choice calls the given function passing it one row at a time, we have to change each reference
the generic betting function into:
function genericBetting(row)
 bid = row.bet()
 if bid > row.amount: bid = row.amount
 > @" $(row.name) is betting $(bid:.2) out of $(row.amount:.2)"
 row.amount -= bid
 return bid
end

Then, just change the self.bidding call into
winner = self.choice(genericBetting)

And now it's possible to remove the extra column “genbid”.Iterators
Iterators are objects meant to access sequentially other structures. They are the preferred way to
partially scan a long sequence of data. They provide all the functionalities of a for-in loop and they
operate on the same structures that the for/in loop manages, but they can also be used to scan a
sequence backwards, insert data at a certain position or record one or more positions for further
usage.

Iterators can get invalidated because of operations on the underlying sequence, or because they are
moved outside the sequence range. The rules for invalidation varies depending on the underlying
structure, but usually adding or removing an element may cause invalidation. The only safe way to

Falcon Survival Guide 102/130

change a structure so that the iterators stay valid is doing that through the iterators themselves.

An iterator is created calling the first() or last() method on sequences, or using the
constructor of the Iterator class. For example :
iter = Iterator([first, second, third])
vector = ["a","b","c"]; iter = vector.first()
iter = vector.last()

Are all valid ways to create an iterator on an array. In case of random access sequences (the items
you can access using an integer index in square brackets), the Iterator class constructor may be
given an optional numeric parameter indicating the initial position where the iterator is placed. The
integer accepts array convention where a negative number indicates a position from the end of the
sequence. Iterators for other sequences accepts only 0 or -1 (for the last element). Iterators over
attributes (which scans the objects that have been currently assigned a certain attribute) can be
created only starting from the begin of the sequence.

Iterators provide the value() to read or set the current value. Using it on an invalid iterator raises
an access error; the hasCurrent() method returns true if the iterator is valid, so it can be used to
check if the iterator has been moved outside the sequence.

The next() and prev() methods move the iterator respectively forward and backward in the
sequence. They return true if there is a next or previous element, and false if the operation caused
the iterator to move outside the bounds of the sequence, making it invalid. Since when that happens
it is often too late, hasNext() and hasPrev() methods are also provided to allow last element
special processing. An element that doesn't have a next element is the last element of a sequence,
and if it has no previous element it is the first.

So, we can rewrite a common have a nice day! for/in loop like the following:
list = List("have", "a", "nice", "day")
iter = list.first()

while iter.hasCurrent()
 >> iter.value()
 if iter.hasNext()
 >> " "
 else
 > "!"
 end

 iter.next() // still works if hasNext() is false
end

For dictionaries, the key() method retrieves the current element key. For example , the following
loop we change every item in the dictionary if the key starts with c.
dict = ["alpha" => 1, "beta" => "2", "charlie" => 3,
 "carl" => 4, "day" =>5]
iter = dict.first()

 while iter.hasNext()
 if iter.key()[0] == "c"
 iter.value("Changed")
 end
 iter.next()
end

inspect(dict)

It is possible to partially scan a dictionary, which is ordered by key, using the dictBest() function. It
returns an iterator to the item considered lexicographically equal or immediately greater than the

Falcon Survival Guide 103/130

searched key. The above example can be rewritten using dictBest like this:
dict = ["alpha" => 1, "beta" => "2", "charlie" => 3,
 "carl" => 4, "day" =>5]
iter = dictBest(dict, "c")

while iter.hasNext() and iter.key()[0] = "c"
 iter.value("Changed")
 iter.next()
end

inspect(dict)

Iterators can be compared for equality; iterators are equal when they point to the same item in the
same collection. For example , this loop would work too:
list = List(1, 2, 3, 4, 5, 6, 7)
iter = list.first()
lastIter = list.last()

loop
 > "Element: ", iter.value()
 if iter == lastIter: break
 iter.next()
end

inspect(iter)

Iterators can be used to remove or insert an item in a collection. In the case of dictionaries, both the
key and the value must be provided; if the iterator is already pointing to a position which is
lexicographically correct for the given item, then the dictionary is not scanned for a correct position
before insertion. Compare the following code:
dict = ["alpha" => 1, "beta" => 2, "charlie" => "3"]
 if "beta" in dict
 dict["bravo"] = 4
end

With this:
dict = ["alpha" => 1, "beta" => 2, "charlie" => "3"]
iBest = dictFind("beta")
 if iBest
 iBest.next()
 iBest.insert("bravo", 4)
end

In the first case, two scans have to be performed on the dictionary; the first to search for the value,
the second to insert. In the second case, Falcon will use the information in the iBest iterator to avoid
the second scan. However, notice that creating an iterator is a relatively heavy operation, and
usually a single dictionary search is faster, so this technique is better exploited with repeated
insertions. List Comprehension
In a realm halfway between the functional and the procedural language paradigms, there's an hybrid
region made of lists, and built up on the way you can process them. The king of that reign is the
"list comprehension", that is, a formal definition of the contents of a list.

More technically, according to wikipedia:

http://en.wikipedia.org/wiki/List_comprehension

Falcon Survival Guide 104/130

A list comprehension is a syntactic construct available in some programming
languages for creating a list based on existing lists. It follows the form of the
mathematical set-builder notation (set comprehension) as distinct from the use of map
and filter functions.

And more practically, a list comprehension is a compact construct that can be used to create a set
starting from another set. In this, it is similar to the map functional operator, but it has two practical
advantages: first, the target set needs not to be of the same nature of the original set, and second, it
is possible to explicitly specify a source that is not exactly a set, but that can generate items.

Falcon model of list comprehension is a bit more advanced with respect to the base definition, and
allows to specify also the nature of the target set. Actually, comprehension in Falcon is performed
through the comp() method of sequence classes and items.

Items offering the sequence interface are currently:

• Arrays
• Dictionaries
• Lists
• Sets Comprehension components

In Falcon, a comprehension is composed of three elements:
 target_set.comp(generator, filter)

The target_set is the sequence that will receive the elements of the comprehension. It may be
empty, but needs not to be. It may be an unordered list (an array, or a List class instance), or
constraints its member somehow (as a Set instance, or as a Dictionary).

The generator is a sequence, a range or a generator function returning one item at a time. As a
sequence, it can be anything that can be accessed through an iterator.

The filter is an optional element that can provide:

• A predicate stating which elements can and cannot be part of the target set
• A modified copy of the items provided by the generator.

In short, the filter is a function (or in general any callable item) that receives two parameters: the
item being currently extracted from the generator and the forming set (that is, the target_set itself).
If present, its return values will be added to the target set, unless it returns an Out of Band "1", in
which case, the elements will be discarded. The filter may also terminate the comprehension
returning an out of band 0 integer value.

The comp() method returns the sequence itself, so it is possible to assign the result of a
comprehension to a target variable directly as it is formed.Basic examples
Array of pair values from 2 to 10 (included):
pairs_in_10 = [].comp([2:11:2])

Falcon Survival Guide 105/130

Same, as a list:
pairs_in_10 = List().comp([2:11:2])

Sorting an unordered list of elements:
sorted = Set().comp(["oranges", "apples", "peaches", "bananas", "grapes"])
for item in sorted: > item

Lowercase version of an uppercase list:
lcase = [].comp(.["A" "b" "Cc" "DDD"], { v => v.lower() })

Accepting values below 10:
less_than_10 = [].comp(.[1 5 18 3 9 12 15], { v => v < 10 ? v : oob(1)})

Here, oob(1) asks comp() list to discard this entry.

Warning about duplicate entries (notice that we receive the set as the second parameter of the filter
function):
ordered = Set().comp(.["N" "C" "N" "D"], { v, set =>
 if set.contains(v)
 > "Duplicated: ", v
 return oob(1)
 end
 return v
 })

for item in ordered: > item

Accepting the first 10 random values (and ordering them):
randomSet = Set().comp(random, { v, set => set.len() == 10 ? oob(0): int(v*100)})
for item in randomSet: > itemDictionary comprehension
To form a dictionary comprehension, each item received must be a "pair", that is, a two elements
array. For example:
dict = [=>].comp(.[.['a' 1] .['d' 2] .['c' 3] .['b' 4]])
for k,v in dict: > @"$k = $v"

The filter function can be used to turn a sequence with one element in a dictionary. The following
example creats a dictionary where each uppercase letter is associated with its UNICODE value.
dict = [=>].comp([0:26], {v=> ['A'/v, ord('A')+v]})Generators
A useful extension of the comprehension system is provided by the generators. A generator is
simply a function returning an item at a time (or a pair of item in case the comprehension is
dictionary-wise). When the generator declares it has terminated by returning an out of band 0
integer.

For example, the following generator returns a random count of random numbers:

Falcon Survival Guide 106/130

function randrand()
 // terminate 1/10th of times
 if random() > 0.9: return oob(0)
 // otherwise, return a random number
 return random(1, 10)
end

rvals = [].comp(randrand)
inspect(rvals)

Using a closure may be more interesting; this creates a lowercase alphabet:
function makeAlphabet()
 m = 'a'
 return function()
 if m > 'z': return ^+ 0
 k = m
 m /= 1
 return k
 end
end

abet = [].comp(makeAlphabet())

Notice that we used the ^+ mark out of band operator, which is faster and more compact than
oob(0), and notice also the UNICODE string increment /=. Finally, notice that makeAlphabet
must be called to provide comp() with the new closure it returns.

Another interesting usage of generators involves callable objects, or functors. We can write the
above example as:
object doAlpha
 m = 'a'

 function call__()
 if self.m > 'z': return ^+ 0
 k = self.m
 self.m /= 1
 return k
 end
end

abet = [].comp(doAlpha)

Closures are generally more compact and efficient than functors, but functors are more flexible and
they may even alter their behavior in during the comprehension. In fact, we may provide a functor
method as the filter, so that...
class randgen(count)
 count = count

 function call__()
 return random(1,10)
 end

 function filter(elem, set)
 if set.len() >= self.count: return ^+ 0
 return elem
 end
end

r = randgen(10) // max 10 elements

rlist = [].comp(r, r.filter)

In the above example, the instance r is used both as a functor to generate the items, and as a filter to
determine when the sequence should be considered complete.

Falcon Survival Guide 107/130Completion comprehensions
As said in the introduction, a comprehension needs not to be performed on an empty sequence.
Actually, the items created in the comprehension are added (appended) to the target sequence; for
example:
tgt = [1,2,3]
tgt.comp([0:4], {v=> 'A'/v})
inspect(tgt)

As seen, the tgt array is modified on place, receiving the items generated by the comprehension.Custom comprehensions
The comp method can also be applied as an FBOM method to objects and blessed dictionaries
exposing a method named append. The method will be called (atomically) for each item generated
by the comprehension (after it has been accepted by the filter).

For example, the following code fills an array in an object property:
class MetaArray
 _array = []

 function append(data)
 > "Appending: ", data
 self._array.add(data)
 end

 function display()
 > self._array.describe()
 end
end

ma = MetaArray()
ma.comp([0:3], {x=> x*2})
ma.display()

The same code can be expressed as a blessed dictionary:
d = bless([
 "array" => [],
 "append" => function(data)
 > "Appending: ", data
 self.array.add(data)
 end
])

d.comp([0:3], {x=> x*2})
inspect(d.array)

In this case, the "append" method will take ownership of the comprehension process. In fact,
blessed dictionaries cannot normally receive comprehension items as normal dictionaries, unless
filtered through an append method. For/in generators
The for/in loop provides a procedural version of the list comprehension construct. Generators can
be used as the source element of the for/in loop, as in the following example:
function makeAlphabet()
 m = 'a'

Falcon Survival Guide 108/130

 return function()
 if m > 'z': return ^+ 0
 k = m
 m /= 1
 return k
 end
end

f = makeAlphabet()

for i in f
 forfirst: >> "Alphabeth: "
 >> i
 formiddle: >> ", "
 forlast: > "."
endError recovery
You'll remember our first interactive Falcon script: that was the one asking you for your age and
then entering a loop congratulating with you many times for your past birthdays.

The int() function tried to convert a string (what you typed) into an integer (your age), but if this
was not possible for some reason, a runtime error appeared instead, and the program was
terminated. Here follows a reduced version of that script that will serve our needs:
print("Enter your age: > ")
age = int(input())

count = 0
while count < age
 count += 1
 printl("Happy belated birthday for your ", count, ".")
end

Falcon provides a mechanism to handle unexpected situations that may arise in a program. Many
library functions and language constructs use this mechanism to communicate with the controlling
script about unexpected situations, but this system is also available to the script itself, so that script
writers can take advantage of this. It's called exception raising .

Every time the Virtual Machine, one of the library functions or even other script parts run into a
potentially dangerous situation, they raise an exception. If this exception is not handled somehow
by the script, it is handed back to the system; the Falcon interpreter will print an error message and
exit.

If the Falcon Virtual Machine is used by an embedding application to run some
scripts, the embedder has the ability to set a top level exception handler. This will
usually grant the embedding application the ability to know about fatal errors in the
scripts, and take sensible actions (as i.e. mailing the administrators).

There are a set of exceptions that are called unstoppable . These exceptions are raised by library
functions or by the Virtual Machine itself if it finds some critical condition that may prevent scripts
from working, as for example script bytecode corruptions. In those situations, letting the scripts
intercept the exceptions would not be wise, hence the need of unstoppable exceptions.

Exceptions can be handled by the script by using the try - catch control block:
try
 [try statements]
[catch [object_type] [in error_variable]]

Falcon Survival Guide 109/130

 [catch statements]
end

Each catch block can intercept a certain kind of variable. The working principle is the same as the
select statement; a type can be one of the type names, or it can be the name of a symbol declared
somewhere in the program.

Try-catch blocks can be nested (put one into another) or combined with any other Falcon block
statement (if, while, for, function and so on). The try-catch block functionality is as
follows: whenever an instruction inside the try (try-statements) causes an exception to be raised, the
control flow is immediately broken. If a catch block is present, the type of the raised object is
matched against the type specifiers of the catch blocks. Overall types (as i.e. StringType or
ObjectType) get precedence, then the specific symbols used as specifiers are considered in the order
they are declared in the catch clauses. For this reason, catch blocks intercepting subclasses should
be declared before the ones intercepting parent classes. Finally, if none of the typed catch blocks
matches the raised exception, the raised error is passed to a catch hander without type declaration, if
present. If a typeless catch clause is not present, the error is then raised to the application level and
this usually terminates the script.

The following example ensures that the user will write a numeric entry:
age = 0
while age == 0
 print("Enter your age: > ")

 try
 age = int(input())
 catch
 printl("Please, enter a numeric value")
 end
end

A catch clause may have an optional variable that will be filled with the exception that has been
raised in the try block. The exception can be any Falcon item (including numbers, strings and
objects) that describes what exactly was the error condition. By convention, the Virtual Machine
and all the library functions will only raise an object of class Error , or one of its subclasses.
However, scripts and other extensions libraries may raise any kind of item.

The Error class provides a series of accessors, that is, methods that are specifically used to access
data in the inner object. Normally, scripts are not very interested in peeking the data inside an Error
instance; usually, the embedding application is the entity that is meant to intercept errors and deal
with them. For this reason, the embedding API puts at library disposal a C++ class called
Falcon::Error; in case the script wants to intercept it, and only in that case, the C++ object is
wrapped in Falcon object, and methods are used to query the internal Falcon::Error C++ instance.
This is because intercepting and analyzing Error instances from scripts is considered an
extraordinary operation; the overhead introduced by using methods instead of plain properties to
retrieve Error values is marginal with respect to the advantage the embedding application receives
by being able to use directly C++ objects in its code when a forbidding error condition is
encountered by the script.

The content of an Error Objects is enumerated in the Function Reference manual. Please, refer to
that guide for the details.

Now we can print a more descriptive error message about what the user should do in our test
program:
age = 0
while age == 0

Falcon Survival Guide 110/130

 print("Enter your age: > ")

 try
 age = int(input())
 catch in error // any variable name is ok here
 printl("Oops, you caused the error number ", error.getCode(),
 "\nwhich means that: ", error.getMessage())
 printl("Please, enter a numeric value")
 end
end

Do not confuse the Error class with the above error variable: Falcon is fully case-sensitive, so
the variable we named error in the above code is just a normal variable receiving an Error class
instance.

Notice that the catch block is not immune to error raising. If an exception is raised inside a catch
block, it will have exactly the same effect as if it were raised in any other part of the program: it
may be caught again with another try/catch block, or it may be left to handle to the above handlers,
or finally to the Virtual Machine. We'll see in a moment how this fact can be useful.

The try instruction can be abbreviated with the : operator; it wont be possible to catch any error in
this case, but this may be useful in case any possible error must simply be discarded:
 try
 age = int(input())
 end

 // is equivalent to

 try: age = int(input())Raising errors
It is interesting to be able to raise errors; the execution flow is immediately interrupted and a
possible error manager is invoked, so raising errors inside the scripts may often obviate the need for
"if" sequences, each of them checking for the right things to be done at each step. The keyword
raise makes an item to be thrown and treats it as an exception.

The script may choose two different approaches to raise errors: one is that of creating an instance of
the Error class using the Error() constructor, which accepts the following parameters:
Error(code, message, comment)

However, sometimes it is useful to throw a lighter object. Suppose that we want to set a maximum
and minimum age in our example, and that we cause an error to be raised when those limits are not
respected. In this case, that we may call flow control exception raising , having a full error to be
raised may be an overkill. Follow this example:
age = 0
loop
 print("Enter your age: > ")

 try
 age = int(input())
 if age < 3: raise "Sorry, you are too young to type."
 if age > 150: raise "Sorry, age limit for humans is 150."

 catch StringType in error
 printl(error)
 // age has been correctly assigned. Change it:
 age = 0

Falcon Survival Guide 111/130

 catch Error in error
 // it's a standard error of Error class, manage it normally
 printl("Oops, you caused the error number ", error.code,
 "\nwhich means that: ", error.description)
 printl("Please, enter a numeric value")

 catch in error
 printl("Something else was raised... but I don't know what...")
 printl("So I raise it again and the app will die.")
 raise error
 end
end age != 0

In this way, we have a controlled interruption of the normal code flow which is passed to the
StringType catch branch, with a minimal overhead with respect to the equivalent code performed
with a series of branches. If the weight of those branches becomes relevant, the exception code flow
control may be even more efficient (the virtual machine management of try-catch blocks is
comparatively light with respect to any other kind of operation), while it may be more elegant, and
possibly more readable.

It is also to be noticed that the caught variable may be parsed through a select statement. This may
or may be an interesting opportunity, depending on the needed flexibility. The above code is
equivalent to the following:
 // the rest as before...

 try
 age = int(input())
 if age < 3: raise "Sorry you are too young to type."
 if age > 150: raise "Sorry, age limit for humans is 150."

 catch in error
 select error
 case StringType
 // manage strings as before

 case Error
 // manage Error instances as before...

 default
 // print something as before...
 raise error
 end
 end

This solution is a visually a bit less compact, requiring three indent levels where the previous only
needed one. Also, the VM has an opcode that manages a typed catch a bit faster than a select
statement (it's one VM opcode less, actually, but the opcode that is skipped with the typed catch
approach is quite fast to be executed). However, it presents two advantages: first of all, it is possible
to execute some common code before or/and after any specific error management. Secondly, the
select code may be delegated to a function (or to a lambda) that may be changed on the fly during
program execution, actually changing the error management policy for that section. Through this
kind of semantics, a common error management policy may be given to different handlers. As this
doesn't prevent writing specific typed catches, each error management code may be highly
customized through a combination of static typed catch statements and dynamic catch-everything
statements passing the raised value to a common manager.Falcon modules
Falcon is a modular language by design. It is provided with a Virtual Machine oriented runtime

Falcon Survival Guide 112/130

linker that is able to fulfill script requests about base module loading. By default, the scripts are
provided with the Core module, a set of functions, classes and objects that are somehow part of the
language; for example, it contains the typeOf, int, and len functions, the Error class and its
children, and so on. The core module is always present in Falcon, although embedding applications
may decide to override it.

It is then possible to create binary and falcon language modules that can be loaded by final scripts.
Explaining how to create binary modules is beyond the scope of this manual; here we'll see how to
create Falcon language modules.The export directive
Every symbol defined in a module is private to that module, and cannot be referenced elsewhere,
unless it is explicitly exported with the export keyword. The export keyword can be placed
everywhere in the file, and has this grammar:
export symbol_name [, symbol_name, ..., symbol_name]

Many export statements may be present in one file, so that using a list of symbols in a line or
using several export statements has the same effect. If used without any symbol name, export
will have the effect of exporting all the symbols in a script (and other export statements will be
signaled as errors).The load directive
The load directive instructs the Module Loader that the current script would like to have other
scripts loaded as well. This is the format of the load directive:
load module_logical_name

The "logical name" of a module is handed to the module loader, that will try to resolve the module
name so to find it based on the following rules:

When a module is searched in a path, first a binary module that match the logical name is searched;
then the loader will search for a pre-compiled module (a binary file with the same name of the
logical module name, and the .fam extension). Finally, a source .fal script will be eventually loaded
and compiled on the fly. Partitioning
Partitions are logical (and possibly physical) subdivisions or categories in which modules are
organized. A partitioned module resides in a sub-portion of the logical space in which the modules
reside. A partition usually is physically represented by a folder, a directory, a link or a file system or
a data block in a compressed file. However, partitioning need not necessarily be physical; it may
also be a different set of modules provided by an embedding application. The standard Falcon
loader, used by the command line interpreter, uses subdirectories in media declared in
FALCON_LOAD_PATH as partitions.

Partitions are indicated in the load directive (and subsequently in the module name) as dot-
separated symbols.

For example, the following directive:

Falcon Survival Guide 113/130

load networking.http

will search the module "http" in a partition (subdirectory) called "networking" in locations indicated
by the load path.

The falcon command line interpreter will automatically add the path of the main
module being currently executed in front of its module search path. This behavior is
considered "standard", and compliant embedding applications will maintain it. So,
scripts, especially standalone ones, can safely assume that the location from which
they were loaded will be the first searched for required modules and partitions.

Partitions can be nested. Consider the following directory tree:
main.fal

data/
 calendar.fal

engine/
 mengine.fal
 utils/
 smaller.fal
 larger.fal

The main script may load all the modules through the following directives:
load data.calendar
load engine.mengine
load engine.utils.smaller
load engine.utils.larger

The load directive, and the module logical names, are always relative to the topmost location (or
locations) indicated by the application load path. For example, if it is the engine that needs to load
the modules in the utils partition, it will need to repeat all the path. Supposing, that the above
"larger" module needed to load the smaller one, it would have needed to declare:
load engine.utils.smaller

which is the complete name under which the "smaller" module is known in its application instance.
However, sibling modules and submodules are also known, and those concepts can be used to
simplify load directives, as indicated in the following paragraphs.

Sibling modules
Modules may know that they are part of a logical partition, and they may be willing to rely on other
modules being in the same partition, or in sub-partitions of it. Starting a load directive with a dot, a
module declares that it is searching for a module in its same partition. For example, the above larger
module that was loading a sibling smaller module may have done that using the following syntax:
load .smaller

This notation can be used for sibling partitions. In the above example, the mengine module may
load the modules in utils partition through the following directives:
load .utils.smaller
load .utils.larger

Falcon Survival Guide 114/130

Submodules
Submodules are modules that are logically subordinate to the current module. It is common practice
to put submodules in a partition named after the module logical name. For example, suppose that an
engine module requires two submodules part_a and part_b to run. If those elements are just logical
subdivisions of the engine module itself, they may be physically ordered in a filesystem after the
following scheme:
engine.fal
engine/
 part_a.fal
 part_b.fal

In this case, the keyword self may be used as the root of the partitioning used in the load directive.
That will instruct the module loader to search in sibling partitions with the same name as the calling
module:
// we are inside engine.fal

load self.part_a
load self.part_b

This is equivalent to
// we are inside engine.fal

load .engine.part_a
load .engine.part_b

But using the self keyword to load submodules has the double advantage not to require the script
writer to know the name under which the module will be known when the work will be released,
and that to immediately identify the loaded modules as submodules, logically dependent from the
owner loading them.

Direct name loading
The load directive may also contain a string pointing directly to a .fal script, .fam module or binary
loadable module. The load path may be relative to the current script location or to the top of the
load path, or absolute in case it starts with a "/". For example:
load "submods/mymod.fal"
load "/usr/share/falcon/amodule.fal"

The first entry will load the file called mymod.fal in a "submods" directory that will be searched
through the script load path, while the second one will load the module in a globally visible
directory. The Slave/Master test
A minimal test demonstrates module loading abilities. This is a typical loadable module that exports
some symbols:
function slave_init()
 global shared
 shared = "Original"
 printl("SLAVE - Shared init: ", shared)
end

function slave_func(param)

Falcon Survival Guide 115/130

 print("SLAVE - parameters: ")
 for elem in param
 print(elem, ", ")
 forlast
 printl(elem, ".")
 end
 return "Slave is done."
end

function slave_check_shared()
 printl("SLAVE - shared data is now: ", shared)
end

export slave_func, shared, slave_init, slave_check_shared

And this is a typical script loading a module.
load slave

slave_init()
// "shared" is imported from slave
printl("MASTER - a shared variable: ", shared)

// now we pass some data to the slave routine
elem = ["A", "list", "of", "strings"]
retval = slave_func(elem)
printl("MASTER - return from slave: ", retval)

// and we force the slave to use our data
shared = "Changed from master"
slave_check_shared()

printl("Done.")

Save the first code piece as "slave.fal", and the second as "master.fal". Now you can proceed in two
ways:

It is possible to compile the slave script into a module .fam and then launch the master script:
my-computer$ falcon -c slave.fal -o slave.fam
my-computer$ falcon master.fal

or launch directly the master script. The falcon command line interface will search for sources with
matching names and will try to compile them on the fly.

Of course, loaded modules can request in turn load other modules; however, a loaded module is not
exactly "owner" of the modules it loads. The load directive is just a "pretty please" said to the
Falcon enabled application to provide the required modules before starting the script. The
embedding application may ignore the request or provide its own substitute images, or it may even
load the required module and change some of the items and functions with its own.

The link step is made so that when a module is loaded in to the Virtual Machine, every symbol it
needs has been already exported by some other module. If this doesn't happen, the virtual machine
will issue a link-time error to the controlling application, and the script won't be executed.

Module initialization code
Since version 0.8.12, the Falcon virtual machine executes the main code of a module as soon as it is
linked (that is, loaded and included in the VM). In this way it is possible to create initialization code
which will be executed before the module can be known and used by others.

For example, suppose that a "configuration" module wants to export a list of items to work on. It is
now possible to write a very simple Falcon module exporting just a vector of items to be managed:

Falcon Survival Guide 116/130

// This is the configuration.fal module
configuration = "Item A", "Item B", "Item C", "Item D"
export

And a user module will just need to load the configuration and use it:
// This is the main.fal module
load configuration
for element in configuration
 > "Working on ", element, "..."
 // ...
end

To know if the module is the topmost module of a load hierarcy, that is, to know if a module is
currently used as "main" module, starting and executing a complete falcon program, the
vmIsMain() function is provided.

This function returns true if the module in which is called has been directly launched by the
command line falcon command, or by an embedding application; otherwise it returns false. This
can be used to execute some code in the main part of the script only when the module is loaded
directly. For example, service modules providing functions and objects to be used by others may
also provide a main section that is used for testing; if the service module is called directly,
vmIsMain() returns true and some testing code can be performed:
// This will always be executed when this module is linked in the VM
configuration = "Item A", "Item B", "Item C", "Item D"

if vmIsMain()
 // this will be executed only if loading via "$ falcon configuration.fal"
 > "Testing contents of the configuration..."
 inspect(configuration)
end

export

Now, our main.fal module will work as previously, but executing directly
configuration.fal will cause the contents of the configuration to be inspected.

However, init blocks of objects are executed right after the link step and right before the Virtual
Machine proceeds, allowing the calling application to link another module. So, if you need some
initialization for a module before its main code has a chance to be executed, it is possible to create
an object with an init block at the sole scope of initializing the module. Implicit and explicit import
Falcon compiler believes that everything that has been seen in the main body of a script without
being formerly assigned a value is to be found in another module. See this simple script:
a_var = 0
printl(a_var)

The variable a_var is assigned a value, and so Falcon decides that a_var will be a symbol owned
by the module where it is assigned. On the other hand, printl symbol has not been given a value;
when it's first met it has not been assigned, so the compiler supposes that it must be externally
provided. The Virtual Machine will check this supposition at link time by searching the exported
symbols for printl; as it is found in the Runtime module (loaded and linked automatically by the
command line tool), the deal is done and the script can proceed.

As the item holding printl symbol is shared among all the modules, changing this item in a

Falcon Survival Guide 117/130

module will cause all the modules to see this change immediately, and to start using the new
function instead of printl . So:
a_var = 0
printl(a_var)
// from now on, printl will be remapped to print
printl = print
printl(a_var, "\n") // will actually call print, so we add a newline

This is a powerful feature, but as any powerful feature it must be used cautiously. In the next
example, things don't go straight:
a_var = 0
// from now on, printl will be remapped to print
printl = print
printl(a_var, "\n") // will actually call print, so we add a newline

What has been changed? The first reference to printl is now an assignment, and so the compiler
decides that we want printl to be a symbol private for our module. Asking to export it wouldn't
work (actually, the Virtual Machine would raise an error for double definition of a shared symbol).
How can we tell the compiler that we want printl to be the same item that has been imported by
all the other modules?

By using the explicit import directive:
// some part high in the module
 import printl

// after much code

// from now on, printl will be remapped to print
printl = print
printl("\n") // will actually call print, so we add a newline

The first naming of printl evaluates in an auto-expression that seeks for printl value. The
compiler will optimize it anyway, but it will record the fact that the module is seeking for printl
elsewhere. In general, you may import explicitly a set of symbols from the environment by
declaring them in an array that is never assigned:
// some part high in the module

import shared, printl
...
shared = "Value from master module."

In this way, even if the master modules assigns a value to the shared variable, this won't turn the
variable into a module private declaration, as the module explicitly seeks it elsewhere.Local import and namespaces
The load and export directives are adequate to build monolithic applications which are broken in
sub-modules for convenient storage of strongly related elements. However, when it is necessary to
access symbols provided by foreign libraries providing utility functions and classes, it is better to
name the symbols after the library that provides them, or eventually to chose a different name to
indicate those symbols.

In fact, two libraries providing similar functions and not knowing each other may export symbols
having the same name, and this would result in a name clash that would cause the Falcon Virtual
Machine to raise a link-time error.

Falcon Survival Guide 118/130

To avoid this problem the import/from directive (also called local import) is provided. Local import
stores the symbols that the program is willing to access into a namespace where they can be safely
accessed, forcing the Virtual Machine to ignore any export request coming from the loaded module.

The import/from directive has the following grammar:
import [sym1, sym2, ... symN] from <modname> [in namespace|as alias]

The modname specifying the module name where the symbols are loaded from has the same
format of the module name used by the load directive. It can indicate sibling, child or even top-
level modules; a relative or absolute path specifier between quotes may also be specified.

For example:
import func0 from topLevelMod
import func1 from .sibling
import func2 from self .child.subchild
import func3 from "/usr/share/falcon/utils.so"

To form the namespace containing the desired symbols, the leading "self." and "." in the module
names are removed, and path separators are turned into "."; so, to access the above symbols, the
following code can be used:
topLevelMod.func0()
sibling.func1()
child.subchild.func2()
usr.share.falcon.func3()

The local import system also performs name checking at compile time; accessing an unknown
symbol from a namespace declared through import/from will raise a compile-time error.

We're using only functions in this examples for brevity, but any global symbol can be
used in the import/from clauses; this includes classes, objects and global variables.

However, if the symbols to be imported from a module are too many or are not known in advance,
(i.e. because created dynamically by a code generator), it is possible to request a generic local
import by not specifying any import symbol. The compiler will then generate a request to import
any symbol accessed in read-mode in that namespace, and name mismatches will be detected at link
time by the Virtual Machine:
import from someMod

someMod.func0()
someMod.func1()
...
someMod.funcN()

It is possible to use an arbitrary name instead of the module name as the namespace for the loaded
symbols by specifying an alias after the "in" keyword; in this way it is also possible to specify
different aliases for the same module. For example :
import funcA from "/usr/share/falcon/utils.so" in utilsA
import funcB from "/usr/share/falcon/utils.so" in utilsB

utilsA.funcA()
utilsB.funcB()

Notice that while it is not possible to locally import a symbol directly in the main global namespace
visible from a module, that same symbol may be assigned to a global variable and used directly. For
example :

Falcon Survival Guide 119/130

import func from "/usr/share/falcon/utils.so"

func = usr.share.falcon.utils.func
func()

If all the symbols to be imported from a module do n't fit gracefully on a line, it is possible to
specify more import/from directives referencing the same module (and eventually the same alias)
declaring different symbols. For example :
import func, func2 from mod1
import func3 from mod1

import func4 from mod1 in mod
import func5 from mod1 in mod

Finally, it is possible to seamlessly merge import/from and load directives in the same program,
even referencing the same module. Using load will just ask the virtual machine to honor the export
requests of the target module and to make globally visible the exported symbols, while
import/from actively searches for symbols inside the target module, ignoring exported symbols.
If a module is linked just because of import/from requests, the virtual machine won't honor its
exports, but if there is at least one load request, then exports will be fulfilled and made available to
any module in its main namespace.

Symbols declared with a leading "_" are considered private of the declaring module,
and they won't be exported through export all requests nor be visible in
import/from requests.

Local import in global namespace
In Falcon, it is possible to assign an imported symbol (with eventually its own namespace) to a local
variable, and use that one instead, like in this example:
import func from module
myFunc = module.func
...
myFunc()

this requires the Virtual Machine to execute the code in the module, as the assignment is an explicit
VM operation. It is possible to instruct the VM to link the required foreign imported symbol into a
local symbol in the global namespace, using as instead of in:
import func from module as myFunc
..
myFunc() // actually, it is an alias for func in the given module

In this way, it is possible to bypass the standard namespace assignment in explicit import; just,
name the local alias after the original name:
import func from module as func
...
func() // a private, safe copy of func in module

The advantages of doing this instead of using the load directive are:

The load directive is meant to pile up and build an application made of several components that
have been divided into modules to be more handy, or that are common to different applications. On
the other hand, the various explicit import directives are meant to get a foreign executable code

Falcon Survival Guide 120/130

and/or other symbol and use it locally. It is just natural to use both in a complex Falcon applications
that may need application-aware components and then load utilities that are used locally in the
context of a single module.Dynamic module loading
Falcon makes possible to dynamically load modules by two means: the include function and the
Reflexive Compiler class.

Explaining them both is beyond the scope of this survival guide; the include function is
explained in the core module reference, and the Reflexive Compiler is a class exported by the
compiler standard Feather module. They both allow to import dynamically module honoring or
ignoring their exports, at loader's choice.

The include function can be provided with a dictionary of strings, whose values be filled with
the global symbols with matching names coming from the loaded module.

The Reflexive compiler gives a greater degree of control on the loaded module, which is
represented by a Falcon class and can be queried for symbols, inspected, executed, modified and so
on. Also, the compiler is able to compile Falcon code on the fly from a string. The directive statement
The behavior of the compiler can be configured through the directive statement, which alters
one or some of the internal settings of the Falcon compiler.

The definition of the statement is the following:
directive <directive1> = <value1>, ..., <directiveN> = <valueN>

More than one directive statement may be specified in a file.

The directives specified in a source file affects only the given file. Compilation of other files is not
subject to the directives specified in a given source, even if they are compiled to fulfill a load
request in that source.

It is possible to specify values for directives that will affect all the compiled files from falcon
command line interpreter, with the -D option. For example :
[user@host]$ falcon -D strict=on script.fal

This command would compile script.fal and any other related script setting the strict
directive to on. However, files being loaded but having being already compiled differently won't be
recompiled. To be sure to compile all the scripts with the selected directives, add the -f option so to
force recompilation.

In the rest of the chapter, the directives currently available and their effect is described. Lang directive
The lang directive declares the (human) language in which the module is mainly written. It is
useful for internationalization, so that the translation table compiler knows which languages not to
include in the final translation, and the module loader knows which translation tables are embedded

Falcon Survival Guide 121/130

in the module and need not to be searched.

For more details about this feature, read the paragraph about program internationalization on
page115.Strict directive and def statement
The strict directive forces explicit declaration of variables through the def statement. This is useful
to have the compiler to perform checks against possible symbol name misspelling errors.

Once the strict directive is set to 'on', every assignment to unknown symbols must be prefixed by
def

The def statement can be followed by a list of assignments separated by commas. Because of this,
multiple assignments to undefined variables cannot happen when strict is in control:
directive strict=on

// define some variable
def var1 = nil, var2 = nil

// forbidden: var4 is undefined
var4, var1, var2 = one, two, three

// allowed, var1 and var2 have already been def'ed.
var1, var2 = one, two

Because of the def statement grammar definition, array assignments must be explicit.
a = 1, 2, 3 // alternative to [1, 2, 3]

// but with strict active
directive strict=on

def a = 1, 2, 3 // error
def a = [1, 2, 3] // ok

In strict mode, variables must be redefined in their own context; for example :
def a = 1

function alpha()
 def a = "alpha value"
 //...
end

function beta()
 def a = "beta value"
 //...
end

To import a global variable in a local context, the global statement becomes mandatory:
def a = 1

function alpha()
 global a // importing A
 a = "alpha value"
 //...
end

Falcon Survival Guide 122/130Version directive
The directive version permits assigning a version for a given module. The value will be available
for the program loading the FAM module and for the script itself.

The value associated to the version directive must be a single number, and can contain major, minor
and patch version numbers encoded in an hexadecimal number. For example , version 2.3.15 can be
expressed as
directive version=0x2030F

Minor and patch version numbers are limited to 255, but major version number can be any value.

From Falcon scripts, the current module version can be accessed with the vmModuleVersionInfo()
function, which returns an array of three values (major, minor, patch). If the version directive has
not been set, it will return three zeros. For example:
directive version=0x010203

function version()
 ver = vmModuleVersionInfo()
 > @"My program, version $(ver[0]).$(ver[1]).$(ver[2])"
end

version() // --> My program, version 1.2.3Advanced topics
The vast majority of falcon language is now covered. There are still a few of issues that are not
covered by the tutorial-like part of this manual, and that are covered here just for reference. Variable aliases and pass by reference
Falcon provides a powerful method to handle variables indirectly. Instead of having the symbol of a
variable immediately available, the it is possible to create an alias to a variable. References can also
be used to pass parameters to the functions, making the function able to alter their value. A variable
alias is created with the $ alias operator:
var = "original value"
var_alias = $var // aliasing var to var_alias
var_alias = "new value"
printl(var) // now will print "new value"

function change_param(param)
 param = "changed"
end

var = "original"
change_param(var) // pass by value
printl(var) // still "original"

change_param($var) // pass by alias
printl(var) // now is "changed"

References are "sticky": they remain bound to the referencing variable until another reference is
assigned to them. To remove the sticky reference from a variable, it is possible to assign a $$ to it,
meaning just "stop being a reference to something". After this operation is done, the referencing
variable will be set to nil, and further assignments to it will be considered as normal assignments.

Falcon Survival Guide 123/130

It is not possible to return values by reference. To avoid having "floating references" to
objects that may be no longer valid, any return value pointing to a reference is turned
into a copy of the referenced item. Note that this doesn't mean that deep objects as
arrays, dictionaries and instances will be duplicated; only the item itself is duplicated. Coroutines

Coroutines are routines that run concurrently in the same Virtual Machine. The VM executes some
instructions from one coroutine, then it swaps it out and goes on executing some instructions of
another coroutine and so on until the first coroutine is called again. From a user standpoint, it seems
that that all the routines are running at the same time.

Coroutines are not OS level threads. Calling a function that can cause the physical machine to block
will suspend the execution of all the coroutines. Also, even if the target platform is provided with
more than one CPU, all the coroutines will use the one on which the Virtual Machine is running.

The launch statement creates a new coroutine:
launch function_name ([function parameters])

The coroutine is executed by calling the specified function with the required parameters; the
execution continues in the same context where launch is called at the next lines, while the
coroutine is beginning its processing.

Coroutines can launch other coroutines. Each one is independent from its parent; from a Virtual
Machine point of view, the launcher and the new coroutine are identical in every respect. The VM
will terminate the execution only when the last coroutine that has been launched completes its
operation, or when a exit() function is explicitly called by any of the running coroutines. Of
course, coroutines can call other functions, methods, code blocks, even recursively.

A coroutine terminates its execution when the function that was originally launched returns; also, it
may terminate in any moment if it calls the yieldOut() function.

The functions named in this chapter are all provided by the core module. Although the
core module is physically stored in the virtual machine library, it must be created and
linked in the VM as any other module. Embedding applications may override it
partially or completely.

Synchronization
Synchronization is a very important aspect under any parallel environment; however, coroutine
parallelism is just a "fake" parallelism, and this allows some simplification with respect to a full
multi-threading model: while running, each coroutine is completely owning the Virtual Machine.
Reads and writes to shared variables can be considered atomic. A coroutine needing more data can
swap out and require another coroutine to be executed by calling the yield() function; if it thinks
that it won't have anything useful to do for a certain time, it can call the sleep(seconds)
function and it will be called only after the timeout has expired.

The sleep(seconds) function can also be called when the VM has not started any
coroutine; this will make it to be idle for the required time. The parameter may be a
floating point number if a pause shorter than a second is required.

Falcon Survival Guide 124/130

If a coroutine is preparing a complex set of data on which other coroutines may depend upon, it can
be prevented from being swapped out when the job is not complete by calling the }}
{{beginCritical () function; this will force the VM to continue executing the coroutine
without any interruption until it signals it is done by calling either yield(), sleep(seconds)
or endCritical () functions. In the latter case, the coroutine may continue its processing if its
timeslice was not completely consumed.

Finally, a coroutine may put itself in wait for other parts of the process to be completed. This is
done by synchronizing on a semaphore object, created from the Semaphore class.
synch = Semaphore(<initial value>)

The semaphore as an integer initial value (zero if not provided) which regulates its behavior. When
the value is greater than zero, waiting on the semaphore by using the wait() method will allow
the coroutine to continue its processing and will contextually reduce the semaphore value by 1.
When the value is zero, the coroutine will be swapped out and won't be swapped in again until the
semaphore value is incremented with the post(). In the following example, we use a semaphore
to start a coroutine at a time:
function coro(id, syn)
 syn.wait()
 printl("Coroutine ", id, " started")
end

semaphore = Semaphore() // will create a semaphore initially set to 0

launch coro(1, semaphore)
launch coro(2, semaphore)
launch coro(3, semaphore)

for i in [0:3]
 sleep(1)
 semaphore.post()
end

printl("Main program end")

This script creates a semaphore object that is initially set to 0. When the first coroutine tries to wait
on the semaphore, it gets blocked and swapped out. So happens to the other coroutines. Then, the
main coroutine sleeps a bit and post on the semaphore. The expected output from this script is as
follows:
Coroutine 1 started
Coroutine 2 started
Main program end
Coroutine 3 started

When some coroutines are waiting and a semaphore is posted, the coroutine that had been waiting
for first is the first one to be re-enabled as soon as the current coroutine swaps out. To have a
semaphore waiter to immediately punch in after a post(), yield() must be called after that.
The sleep() function has actually the same effect, and it also tells the VM that the coroutine
calling it shouldn't be reactivated again before a certain time; so after the last semaphore post, as the
loop ends, the main coroutine is allowed to proceed before the third coroutine can punch in.Program internationalization
Some of the strings contained in a Falcon program may be automatically translated into a target
language of choice. Using the i character in front of a string, that gets marked as an

Falcon Survival Guide 125/130

international string and gets readied to be exported to an XML dictionary. Translators
(generally humans) may take this extracted XML file and fill translations for a certain language. An
utility called fallc.fal (Falcon language compiler) will then convert one or more translated
XML files into a single ftr (Falcon translation).

At link time, the modules will be able to load a translated table instead of their original string table,
and will then show the translated strings with 0 overhead.

The falcon command line tool can generate a translation file for a source or a binary module
(either an already compiled .fam or a native . dll /. so module) through the -y option. It is then
possible to set the language for an application through the command line option -l (applicable to
falcon or falrun). If the language is present in the .ftr files existing besides the loaded
modules, it will be used, otherwise the operation will fail silently.

The languages must be indicated through the 5 characters ISO language names, as en_US, en_GB,
it_IT, ja_JP, and so on.

A source file willing to be internationalized should declare the language in which is written through
the directive language. If not declared, the starting language will be set to C (none).

For example, let's internationalize a small sample file:
directive lang="en_US"

> i"Hello world!"

// Let's add some variable...
var = int(random() * 100)

// using string expansion operator in international strings
> @i"You are $(var)% lucky."

> "Test complete" // this string will stay untouched.

Saving the file as inat.fal and running the command
$ falcon -y inat.fal

The file inat.temp.ftt is generated. It is possible to change the name of the output template
translation file adding the -o option; for example :
$ falcon -o my_template_file -y inat.fal

will save the empty translation table into my_template_file.

The contents of the template translation table looks like the following:
<?xml version="1.0" encoding="utf-8"?>
<translation module="inat" from="en_US" into="Your language code here">
<string id="2">
<original>Hello world!</original>
<translated></translated>
</string>
<string id="7">
<original>You are $(var)% lucky.</original>
<translated></translated>
</string>
</translation>

Supposing to translate the program into French and Italian, we'll copy this template into two files;
their name is not relevant, but it may be convenient to save them as
<module_name>.<lang_code>.ftt.

Falcon Survival Guide 126/130

So, we'll write inat.fr_FR.ftt as follows:
<?xml version="1.0" encoding="utf-8"?>
<translation module="inat" from="en_US" into="fr_FR">
<string id="2">
<original>Hello world!</original>
<translated>Bonjour a tout le monde!</translated>
</string>
<string id="7">
<original>You are $(var)% lucky.</original>
<translated>Vous avez $(var)% de chances.</translated>
</string>
</translation>

and inat.it_IT.ftt as follows:
<?xml version="1.0" encoding="utf-8"?>
<translation module="inat" from="en_US" into="it_IT">
<string id="2">
<original>Hello world!</original>
<translated>Buongiorno, mondo!</translated>
</string>
<string id="7">
<original>You are $(var)% lucky.</original>
<translated>Sei fortunato al $(var)%.</translated>
</string>
</translation>

It is not necessary to translate all the strings; if the translated block is empty, the original string
is used instead.

The final step is that to compile the translation tables into a single translation file for a module. This
is done through fallc.fal, which works as follows:
$ fallc.fal inat.it_IT.ftt inat.fr_FR.ftt

The command will inform you about an inat.ftr file being created for the inat module.

Fallc.fal will also check for escaped variables contained in the original strings to be
present in the translations; this will prevent mistakes as forgetting a variable or mixing
up its name. To turn off this feature, use the -c command line switch.

Now, using the falcon -l option, we can change the language of our program:
$ falcon -l fr_FR inat.fal
Bonjour a tout le monde!
Vous avez 84% de chances.
Test complete

$ falcon -l it_IT inat.fal
Buongiorno, mondo!
Sei fortunato al 84%.
Test complete

Merging newer versions of the string table
It is possible that the source code which has been internationalized is changed after being translated
in various languages. In that case, it is necessary to merge the existing translations with the new
template generated by falcon -y. The -m <merge_table> option of fallc.fal loads a
template and fixes one or more translations, applying the new string ids, filling the missing new
strings and removing unused old ones.

Falcon Survival Guide 127/130

Suppose to change our program adding a new internationalized string at the beginning:
directive lang="en_US"

> i"Program begin..."
//... rest unchanged

The following command sequence will fix already translated tables and generate a new working ftr.
$ falcon -y inat.fal
$ fallc.fal -m inat.temp.ftt inat.it_IT.ftt inat.fr_FR.ftt
$ fallc.fal inat.it_IT.ftt inat.fr_FR.ftt

Examining the translation tables, you will notice the updated indexes and the new string to be
translated.

It is possible to provide a specific different output for the result of the merge using the -o option,
but in that case fallc will write only one translation on the designed output stream.Variable parameter passing
Falcon supports variable parameter function calling. The compiler never checks for the number of
parameters passed to a called function to count up to those that the function declares. In other
words, the following code is perfectly acceptable:
function varcall(param1, param2)
 printl("First parameter: ", param1)
 printl("Second parameter: ", param2)
end

varcall("one")
varcall("one", "two", "three")

In the first call, param1 assumes the value of one; param2 is set to nil by the VM. In the
second call, the third parameter is simply ignored.

In general, all the unused parameters will be set to nil. However, the target function can know the
number of parameters it has been actually called with and can retrieve their value respectively with
the functions paramCount and paramNumber:
function varcall()
 for i = 1 to paramCount()
 print(i)
 switch (i)
 case 1: print("st")
 case 2: print("nd")
 case 3: print("rd")
 default : print("th")
 end
 // note: paramNumber parameter count is zero based.
 printl(" parameter: ", paramNumber(i - 1))
 end
 printl("End of function.\n")
end

varcall("one")
varcall("one", "two", "three")
varcall("one", "two", "three", "four", "five")

So, the target function is able to configure itself given the parameters that have been given it. It's
also possible to declare parameters in the function header, and then use the paramNumber and
paramCount functions to access to other parameters:

Falcon Survival Guide 128/130

function varcall(p1, p2)
 printl("Required params: ", p1, " and ", p2)
 print("Complete list: ")
 for i = 0 to paramCount() - 1 step 1
 print(paramNumber(i))
 if i != paramCount() - 1: print(", ")
 end
 printl(".")
 printl("End of function.\n")
end

varcall("one")
varcall("one", "two", "three")

This example shows two features: first, it's possible to access via paramNumber() those
parameters that have been declared in the function header. Second, the minimal number of
parameter returned by paramCount() is the number of declared parameters (that's why the first
call ends up printing two items). The declared parameters are considered mandatory and they are
filled and provided to the target function even if the caller does not provide them. The idea is that
you should use them only for those parameters that the caller really should provide, leaving any
optional parameter for paramNumber() to take.

The functions named in this chapter are all provided by the core module. Although the
core module is physically stored in the virtual machine library, it must be created and
linked in the VM as any other module. Embedding applications may override it
partially or completely.

Accessing variable parameters by reference
The use of reference variables and by-reference parameter passing has been previously explained.
The Core module provides two functions that allow a function to interact with parameters that have
been passed by reference without knowing them in advance.

The function paramIsRef (<id>) returns 1 if the nth parameter (starting from zero) has been
passed by reference. The function paramSet (<id>, <value>) is able to set the nth
parameter, as if it was directly set by the script:
function varcall(param1)
 param1 = "some value"
 paramSet(0,"other value")
 printl(param1) // will print "other value"
end

If the nth parameter has been passed by reference, then paramSet() will also change the value of
the called item:
value = "original"
varcall(value)
printl("In main code: ", value) // still original
varcall($value)
printl("In main code again: ", value) // now changed The indirect operator
It is possible to access local, global and imported symbols by name through the unary indirect
operator (#). The string can contain a variable followed by an arbitrary sequence of valid accessors;
when the indirect operator is applied (either to the literal string or to a variable containing it), the

Falcon Survival Guide 129/130

value of the named variable is returned; if the variable is not defined in the VM, or if the accessors
are invalid, the VM will raise an access error.

Actually, the string expansion operator is implemented through the indirect operator; so many of the
sequences that can be used in string expansion can also be used with the indirect operator.

For example, consider the following code:
var = 2

object test
 prop = ["zero", "first", "second", "third"]
end

value = # "test.prop[var]"
printl("Value is now: ", value)

As for the string expansion operator, the indirect operator will translate accessors even recursively
(i.e. decoding var as 2 and then accessing the element 2 in the property of the test object), but it
will return the desired value.

The indirect operator only supports reading from variables, or accessing them. Function or method
calling is not supported.

As the indirect operator is an unary operator, it is possible to apply it more than once in a row to do
indirect indirections:
value = 1000
value_id = "value"
p_id = "value_id"
> ## p_id // prints 1000Meta compilation
Falcon provides a virtual machine that can be directly used by the script compiler. In other words, it
is possible to program the compiler and its output directly from a complete inner script. The \
[... \] escape can contain a meta script, which can also include references to external
modules, and everything that is delivered to the standard output stream in that section is fed into the
compiler at that position in the host script.

For example :
formula = \[
 if SIDE == "left"
 >> "sin"
 else
 >> "cos"
 end
\] (angle)

// or more compact
formula = \[>> (SIDE == "left" ? "sin":"cos") \] (angle)

This will compile into either one or the other version depending on the SIDE variable (or constant)
setting.

The meta compiler also provides a macro command which makes the task of writing meta-scripts a
bit simpler:
macro square(x) (($x * $x))
> "9 square is: ", \\square(9)

Falcon Survival Guide 130/130

Macros can contain arbitrary code; for example they can create classes:
macro makeClassWithProp(name, property) (
 class $name
 $property = nil
 end
)

\\makeClassWithProp(one, speed)
\\makeClassWithProp(two, weight)

inst_one = one()
inst_two = two()

> "Instance of class one: "
inspect(inst_one)

> "Instance of class two: "
inspect(inst_two)

Macros are actually syntactic sugar for meta-compilation; having defined the macro like in the last
example, it is possible to produce a set of classes with this meta-code:
\[
 for clname in ["one", "two", "three", "four"]
 makeClassWithProp(clname, "property")
 end
\] Attributes
Attributes are arbitrary compile-time symbols to which a static value is associated. Modules,
functions, classes and objects can be provided with attributes, that can tell something about their
functionality or be used for various purposes.
// a program
stand_alone: true
author: "Giancarlo Niccolai"

function test()
 group: "coolies"
 author: "Rookie"

 // do something...
end

// show attributes of this module
inspect(attributes())

// show attributes of the test function
inspect(test.attributes())

Module attributes can be inspected by other modules through the Compiler feather module, or by
the C++ API in embedding applications.

	THE
	FALCON'S SURVIVAL GUIDE
	Introduction
	Your first Falcon script

	Control structures
	The if/elif/else statement
	The switch statement
	The select statement
	The while statement
	The loop statement
	More on lines and statements
	Constant declarations
	About the for/in loop

	Basic Datatypes
	Arrays
	Array manipulation functions
	Comma-less arrays
	Strings
	Multiline strings

	International strings
	String replication
	String-to-number concatenation

	String polymorphism
	Literal Strings
	String expansion operator
	String manipulation functions
	Dictionaries
	Dictionary support functions

	Lists
	The "in" operator
	The for/in loop
	For/in ranges
	For/to loops
	For/in lists
	For/in generators

	Memory buffers
	Bitwise operators

	The functions
	Recursiveness
	Local and global variable names
	Static local variables and initializers
	Anonymous and nested functions
	Function closure
	Codeblocks
	Callable arrays
	Accessing the calling context
	Non positional parameters

	Functional programming
	The theory
	Evaluating in functional context
	Evaluation operator
	Multiple evaluation
	Cascading
	List evaluation

	Late bindings
	Self-referencing local values.
	Parametric evaluation
	Functional loop
	More functional loop

	Out of banding in detail
	Out of banding and procedural programming

	Objects and classes
	Falcon stand-alone objects
	The "provides" and "in" operators for objects
	The init block

	Classes
	Methods with static blocks
	Classwide methods
	Property accessors
	Multiple inheritance
	Base method overriding
	Private members
	Operator overloading
	Mathematical operator overloading
	Comparison overloading
	Subscript overloading
	Call overrides and functors

	Automatic string conversion
	Object initialization sequence
	Classes in functional sequences

	Stateful classes
	A scared bird
	States definition
	Transition functions
	State inheritance
	The init state
	Init state and __enter method

	Prototype based OOP
	Instance creation
	Prototype factory functions
	Prototype cloning
	Referencing the factory function

	A small prototype class sample
	Operator overloading
	Mathematical operator overloading

	Comparison overload

	Message Oriented Programming
	Assertions
	Broadcast Control
	Cooperative broadcast
	Automatic marshaling
	Message Slots
	Iterating on VMSlots

	Tabular programming
	Tables are classes
	Default Values
	Table operations
	Table pages
	Table-wide operations

	Iterators
	List Comprehension
	Comprehension components
	Basic examples
	Dictionary comprehension
	Generators
	Completion comprehensions
	Custom comprehensions
	For/in generators

	Error recovery
	Raising errors

	Falcon modules
	The export directive
	The load directive
	Partitioning
	Sibling modules
	Submodules
	Direct name loading

	The Slave/Master test
	Module initialization code

	Implicit and explicit import
	Local import and namespaces
	Local import in global namespace

	Dynamic module loading

	The directive statement
	Lang directive
	Strict directive and def statement
	Version directive

	Advanced topics
	Variable aliases and pass by reference
	Coroutines
	Synchronization

	Program internationalization
	Merging newer versions of the string table

	Variable parameter passing
	Accessing variable parameters by reference

	The indirect operator
	Meta compilation
	Attributes

